The Internet, Email, Ebusiness and the Worldwide Web (Www)

Total Page:16

File Type:pdf, Size:1020Kb

The Internet, Email, Ebusiness and the Worldwide Web (Www) 1 The Internet, Email, Ebusiness and the Worldwide Web (www) Nowadays every self-respecting person (particularly if a grandparent!) has a per- sonal email address. And many modern companies have encompassed ebusiness. They have prestigious Internet ‘domain names’ (advertised with modern lower case company names) and run Worldwide Web (www) sites for advertising and order- taking. What has stirred this revolution? The Internet. But when, why and how did data networking and interworking start? And how did the Internet evolve? Where will it lead? And what does all that frightful jargon mean? (What are the acronyms and the protocols?). In this chapter we shall find out. We shall talk about the emer- gence of computer networking, the Worldwide Web (www), about ISPs (Internet service providers) and about where the Internet started — in the US Defense Depart- ment during the 1970s. We discuss the significance of the Internet Protocol (IP) today, and where it will lead. And most important of all — we start ‘unravelling’ the jargon. 1.1 In the beginning — ARPANET The beginnings of the Internet are to be found in the ARPANET,theadvanced research project agency network. This was a US government-backed research project, which initially sought to create a network for resource-sharing between American universities. The initial tender for a 4- node network connecting UCLA (University of California, Los Angeles), UCSB (University of California, Santa Barbara), SRI (Stanford Research Institute) and the University of Utah took place in 1968, and was won by BBN (Bolt, Beranek and Newman). The network nodes were called Internet message processors (IMPs), and end-user computing devices were connected to these nodes by a protocol called 1822 (1822 because the Internet engineering note (IEN) number 1822 defined the protocol). Subsequently, the agency was increasingly funded by the US military, and consequently, from 1972, was renamed DARPA (Defense Advanced Research Project Agency). These beginnings have had a huge influence on the subsequent development of computer data networking and the emergence of the Internet as we know it today. BBN became a leading manufacturer of packet switching equipment. A series of protocols developed which are sometimes loosely referred to either as TCP/IP (transmission control protocol/Internet protocol) or as IP (Internet protocol). Correctly they are called the ‘IP-protocol suite’. They are defined in documents called RFCs (request for comment) generated under the auspices Data Networks, IP and the Internet: Protocols, Design and Operation Martin P. Clark 2003 John Wiley & Sons, Ltd ISBN: 0-470-84856-1 2 The Internet, email, ebusiness and the worldwide web (www) of the Internet Engineering Task Force (IETF). The current most-widely used version of the Internet protocol (IP) — version 4 or IPv4 — is defined in RFC 791. The current version of TCP (transmission control protocol) is defined in RFC 793. 1.2 The emergence of layered protocols for data communication In parallel with the development of the ARPANET, a number of standardised layered proto- col ‘stacks’ and protocol suites for simplifying and standardising the communication between computer equipment were being developed independently by various different computer and telecommunications equipment manufacturers. Most of these protocols were ‘proprietary’. In other words, the protocols were based on the manufacturers’ own specifications and docu- mentation, which were kept out of the public domain. Many manufacturers believed at the time that ‘proprietary’ protocols gave both a ‘competitive advantage’ and ‘locked’ customers into using their own particular brand of computer hardware. But the principles of the various schemes were all similar, and the ideas generated by the various groups of developers helped in the development of the standardised protocols which came later. All data communications protocols are based upon packet switching, a form of electronic inter-computer communication advanced by Leonard Kleinrock of MIT (Massachusetts Insti- tute of Technology — and later of UCLA — University of California in Los Angeles) in his paper ‘Information flow in large communication networks’ (July 1961). The term packet switching itself was coined by Donald Davies of the UK’s National Physical Laboratory (NPL) in 1966. Packet switching is analogous to sending letters through the post — the data content, anal- ogous to a page of a letter is the user content (or payload) of a standard packet. The user content is packed in the packet or frame (analogous to an ‘envelope’) and labelled with the destination address. When the size of a single packet is too small for the message as a whole, then the message can be split up and sent as a sequence of numbered packets, sent one after another (see Figure 1.1). The networking nodes (which in different types of data networks have different names: routers, switches, bridges, terminal controllers, cluster controllers, front-end Figure 1.1 Post Office analogy illustrating the principles of packet switching. SNA (systems network architecture) 3 processors, etc.) all essentially work like a postal sorting office. They read the ‘address’ on each packet (without looking at the contents) and then forward the packet to the appropriate next node nearer the destination. The best-known, most successful and widely used of the 1970s generation of packet- switching protocols were: • SNA (systems network architecture) — the networking protocols used for interconnecting IBM (International Business Machines) computers; • DECnet — the networking protocols used for interconnecting computers of the Digital Equipment Corporation (DEC); • X.25 (ITU-T recommendation X.25) and its partner protocol, X.75. This was the first attempt, coordinated by the International Telecommunications Union standardisation sector (ITU-T), to create a ‘standard’ protocol — intended to enable computers made by different manufacturers to communicate with one another — so-called open systems interconnec- tion (OSI). 1.3 SNA (systems network architecture) The systems network architecture (SNA) was announced by IBM in 1974 as a standardised communications architecture for interconnecting all the different types of IBM computer hard- ware. Before 1974, transferring data or computer programs from one computer to another could be a time-consuming job, sometimes requiring significant manual re-formatting, and often requiring the transport of large volumes of punched cards or tapes. Initially, relatively few IBM computers were capable of supporting SNA, but by 1977 the capabilities of the third generation of SNA (SNA-3) included: • communication controllers (otherwise called FEPs or front end processors) — hardware which could be added to mainframe computers for taking over communication with remote devices; • terminal controllers (otherwise called cluster controllers) — by means of which, end-user terminals (teletypes or computer VDUs, video display units) could be connected to a remote host computer; • the possibility to connect remote terminal controllers to the mainframe/communication controller site using either leaselines or dial-in lines; • the possibility of multi-host networks (terminals connected to multiple mainframe computers — e.g., for bookkeeping, order-taking, personnel, etc. — by means of a single communications network). Figure 1.2 illustrates the main elements of a typical SNA network, showing the typical star topology. Point-to-point lines across the wide area network (WAN) connect the front end processor (FEP or communications controller) at the enterprise computer centre to the terminals in headquarters and remote operations offices. The lines used could be either leaselines, point- to-point X.25 (i.e., packet-switched) connections, frame relay connections or dial-up lines. During the 1980s and 1990s, SNA-based networks were widely deployed by companies which used IBM mainframe computers. At the time, IBM mainframes were the workhorse of the computing industry. The mainframes of the IBM S/360, S/370 and S/390 architectures became well known, as did the components of the SNA networks used to support them: 4 The Internet, email, ebusiness and the worldwide web (www) Figure 1.2 A typical SNA network interconnecting IBM computer hardware. • Front end processor (FEP or communication controller) hardware: IBM 3705, IBM 3725, IBM 3720, IBM 3745; • Cluster controller hardware: IBM 3174, IBM 3274, IBM 4702, IBM 8100; • VTAM (virtual telecommunication access method) software used as the mainframe com- munications software; • CICS (communication information control system) mainframe management software; • NCP (network control program) front end processor communications control software; • NPSI (NCP-packet switching interface) mainframe/FEP software for use in conjunction with X.25-based packet-switched WAN data networks; • TSO (time sharing option) software allowing mainframe resources to be shared by many users; • NetView mainframe software for network monitoring and management; • APPN (advanced peer-to-peer networking) used in IBM AS-400 networks; • ESCON (enterprise system connection): a high-speed ‘channel’ connection interface between mainframe and front-end processor; • Token ring local area network (LAN). Due to the huge popularity of IBM mainframe computers, the success of SNA was assured. But the fact that SNA was not a public standard made it difficult to integrate other manufacturers’ network and computer hardware into an IBM computer network. IBM introduced products
Recommended publications
  • Internet Invariants: What Really Matters an Internet Society Public Policy Briefing
    Internet Invariants: What Really Matters An Internet Society Public Policy Briefing 26 September 2016 Introduction Today’s Internet has We place an enormous amount of faith in the Internet, largely because it facilitates our transformed how more than two billion people connect and everyday lives. We instinctively trust that when we send an email, it will be received by communicate. And it will the intended recipient. When we type a domain name into a browser, we presume that continue to transform our economy, infrastructure, and the results will be what we are looking for. We can make these assumptions because social lives as cloud computing, Internet invariants ensure that if we send data, it arrives; and if we seek content, it will the Internet of Things, and be located. mobile devices evolve in ways we cannot yet imagine. We don’t often talk about how the Starting in the 1970s, a variety of protocols and network architectures were developed, network behind this technology works, just as most of us don’t but none became the driver of economic and social development that the Internet did. concern ourselves with where IBM’s Systems Network Architecture, for example, failed to take off because it could only electricity comes from, so long connect with hardware manufactured by IBM. The technical system that proliferated as our lights turn on. But as the Internet becomes an instead, and which remains at the foundation of the Internet, was TCP/IP because of its increasingly more pervasive and decentralized nature and underlying values of interoperability, flexibility, resilience, and critical piece of infrastructure, we need to understand both global reach.
    [Show full text]
  • How to Find out the IP Address of an Omron
    Communications Middleware/Network Browser How to find an Omron Controller’s IP address Valin Corporation | www.valin.com Overview • Many Omron PLC’s have Ethernet ports or Ethernet port options • The IP address for a PLC is usually changed by the programmer • Most customers do not mark the controller with IP address (label etc.) • Very difficult to communicate to the PLC over Ethernet if the IP address is unknown. Valin Corporation | www.valin.com Simple Ethernet Network Basics IP address is up to 12 digits (4 octets) Ex:192.168.1.1 For MOST PLC programming applications, the first 3 octets are the network address and the last is the node address. In above example 192.168.1 is network address, 1 is node address. For devices to communicate on a simple network: • Every device IP Network address must be the same. • Every device node number must be different. Device Laptop EX: Omron PLC 192.168.1.1 192.168.1.1 Device Laptop EX: Omron PLC 127.27.250.5 192.168.1.1 Device Laptop EX: Omron PLC 192.168.1.3 192.168.1.1 Valin Corporation | www.valin.com Omron Default IP Address • Most Omron Ethernet devices use one of the following IP addresses by default. Omron PLC 192.168.250.1 OR 192.168.1.1 Valin Corporation | www.valin.com PING Command • PING is a way to check if the device is connected (both virtually and physically) to the network. • Windows Command Prompt command. • PC must use the same network number as device (See previous) • Example: “ping 172.21.90.5” will test to see if a device with that IP address is connected to the PC.
    [Show full text]
  • Xerox® Colorqube 8580/8880 Color Printer 3 System Administrator Guide
    Xerox® ColorQube® 8580 / 8880 Color Printer Imprimante couleur System Administrator Guide Guide de l’administrateur système © 2015 Xerox Corporation. All rights reserved. Unpublished rights reserved under the copyright laws of the United States. Contents of this publication may not be reproduced in any form without permission of Xerox Corporation. Copyright protection claimed includes all forms of matters of copyrightable materials and information now allowed by statutory or judicial law or hereinafter granted, including without limitation, material generated from the software programs which are displayed on the screen such as styles, templates, icons, screen displays, looks, and so on. Xerox® and Xerox and Design®, Phaser®, PhaserSMART®, PhaserMatch®, PhaserCal®, PhaserMeter™, CentreWare®, PagePack®, eClick®, PrintingScout®, Walk-Up®, WorkCentre®, FreeFlow®, SMARTsend®, Scan to PC Desktop®, MeterAssistant®, SuppliesAssistant®, Xerox Secure Access Unified ID System®, Xerox Extensible Interface Platform®, ColorQube®, Global Print Driver®, and Mobile Express Driver® are trademarks of Xerox Corporation in the United States and/or other countries. Adobe® Reader®, Adobe® Type Manager®, ATM™, Flash®, Macromedia®, Photoshop®, and PostScript® are trademarks of Adobe Systems Incorporated in the United States and/or other countries. Apple, Bonjour, EtherTalk, TrueType, iPad, iPhone, iPod, iPod touch, Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries. AirPrint and the AirPrint logo are trademarks of Apple Inc. HP-GL®, HP-UX®, and PCL® are trademarks of Hewlett-Packard Corporation in the United States and/or other countries. IBM® and AIX® are trademarks of International Business Machines Corporation in the United States and/or other countries. Microsoft®, Windows Vista®, Windows®, and Windows Server® are trademarks of Microsoft Corporation in the United States and other countries.
    [Show full text]
  • Cs-204: Computer Networks
    CS-204: COMPUTER NETWORKS Lecture 5 Chapter 19- Network Layer: Logical Addressing Instructor: Dr. Vandana Kushwaha 1. INTRODUCTION Communication at the network layer is host-to-host (computer-to-computer); a computer somewhere in the world needs to communicate with another computer somewhere else in the world. Usually, computers communicate through the Internet. The packet transmitted by the sending computer may pass through several LANs or WANs before reaching the destination computer. For this level of communication, we need a global addressing scheme; we called this logical addressing or IP address. 2. IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet. IPv4 addresses are unique. They are unique in the sense that each address defines one, and only one, connection to the Internet. Two devices on the Internet can never have the same address at the same time. But by using some strategies, an address may be assigned to a device for a time period and then taken away and assigned to another device. On the other hand, if a device operating at the network layer has m connections to the Internet, it needs to have m addresses. A router is such a device which needs as many IP addresses as the number of ports are there in it. 2.1. Address Space A protocol such as IPv4 that defines addresses has an address space. An address space is the total number of addresses used by the protocol. If a protocol uses N bits to define an address, the address space is 2N because each bit can have two different values (0 or 1) and N bits can have 2N values.
    [Show full text]
  • A FACULTY PERSPECTIVES and PRACTICES of SOCIAL PRESENCE in ONLINE POST-SECONDARY LEARNING ENVIRONMENTS a Dissertation SUBMITTED
    FACULTY PERSPECTIVES AND PRACTICES OF SOCIAL PRESENCE IN ONLINE POST-SECONDARY LEARNING ENVIRONMENTS A Dissertation SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Julie Ann Smith IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF EDUCATION Joyce Strand, Ph.D., Adviser April 2018 a Julie Ann Smith 2018 © b Acknowledgements This dissertation would not have been able without my patient adviser, Dr. Joyce Strand, who continued to support me throughout the years and help me to finally finish this research project. The last three years of trying to finish my dissertation included the caregiving to my mother and father. My father spent over two years in assistive care at the end of battling a long war with Alzheimer’s. He needed my mother’s help and she needed mine. This, and a concurrent divorce to my husband of 23 years, prolonged my ability to complete the writing of this dissertation, thus a long time had passed since the literature review. Many thanks go to my committee and doctoral chair who patiently provided me excellent advice in educational theory, interview and survey questionnaire revisions and/or dissertation guidance: Drs. Helen Mongan-Rallis, Craig Stroupe, Terrie Shannon, and Linda Deneen, and Chair Dr. Frank Guldbrandsen. Acknowledgements also go out to the faculty survey respondents and interviewees. Without their volunteer time, participation, and input, I would not have results to advance the study of social presence in the Community of Inquiry model. Additional thanks go to the faculty and staff and my cohort of the Education Doctorate in Teaching and Learning program at the University of Minnesota Duluth in the College of Education and Human Service Professions.
    [Show full text]
  • Why We Should Consider the Plurality of Hacker and Maker Cultures 2017
    Repositorium für die Medienwissenschaft Sebastian Kubitschko; Annika Richterich; Karin Wenz „There Simply Is No Unified Hacker Movement.“ Why We Should Consider the Plurality of Hacker and Maker Cultures 2017 https://doi.org/10.25969/mediarep/1115 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Kubitschko, Sebastian; Richterich, Annika; Wenz, Karin: „There Simply Is No Unified Hacker Movement.“ Why We Should Consider the Plurality of Hacker and Maker Cultures. In: Digital Culture & Society, Jg. 3 (2017), Nr. 1, S. 185– 195. DOI: https://doi.org/10.25969/mediarep/1115. Erstmalig hier erschienen / Initial publication here: https://doi.org/10.14361/dcs-2017-0112 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Creative Commons - This document is made available under a creative commons - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 Attribution - Non Commercial - No Derivatives 4.0 License. For Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz more information see: finden Sie hier: https://creativecommons.org/licenses/by-nc-nd/4.0 https://creativecommons.org/licenses/by-nc-nd/4.0 “There Simply Is No Unified Hacker Movement.” Why We Should Consider the Plurality of Hacker and Maker Cultures Sebastian Kubitschko in Conversation with Annika Richterich and Karin Wenz Sebastian Kubitschko is a postdoctoral researcher at the Centre for Media, Communication and Information Research (ZeMKI) at the University of Bremen in Germany. His main research fields are political communication, social movements and civil society organisations. In order to address the relevance of new forms of techno-political civic engagement, he has conducted qualitative, empirical research on one of the world’s oldest and largest hacker organisations, the Chaos Computer Club (CCC).
    [Show full text]
  • Net Neutrality Reloaded
    Luca Belli Editor Net Neutrality Reloaded: Net Neutrality Reloaded: Zero Rating, Specialised Service, Ad Blocking and Traffic Management Zero Rating, Specialised Service, Annual Report of the UN IGF Dynamic Coalition on Net Neutrality Ad Blocking and Traffic Management Luca Belli Editor Annual Report of the UN IGF This Report is the 2016 outcome of the IGF Dynamic Coalition on Network Neutrality (DCNN). The Report gathers a series of case studies on a variety Dynamic Coalition of net neutrality issues from the perspective of different stakeholders. The double purpose of this report is to trigger meaningful discussion on net on Net Neutrality neutrality trends, while providing informative material that may be used by researchers, policy-makers and civil society alike. Researchers, practitioners and policy-makers regularly contribute to the DCNN report, providing a wide range of heterogeneous views. Preface by Tim Wu In 2016, Zero Rating was by large the most debated net neutrality issue, as reflected by the considerable number of contributions focusing on the topic within this report. Such high number of analyses on zero rating seems particularly useful to meet the increasing demand of research exploring the pros and cons of price discrimination practices. Furthermore, the report examines other very relevant and discussed topics, such as specialised services, ad blocking and reasonable traffic management, providing useful insight on some of the most recent policy evolutions in a variety of countries. Net Neutrality Reloaded: Zero Rating,
    [Show full text]
  • Home Computer on the Line - the West German BBS Scene and the Change of ­Telecommunications in the 1980S
    Home Computer on the Line - The West German BBS Scene and the Change of Telecommunications in the 1980s Matthias Röhr 1. Introduction On the evening of 16th June 1987, the system operators of five German bulletin board systems (BBS) received unexpected visitors. Accompanied by the police, officials of the “Deutsche Bundespost” (Federal Post Office) searched the homes of the juvenile computer enthusiasts for evidence of violations of the “Fernmeldeanlagengesetz” (Telecommunications Device Act), in particular the connection of modems or acoustic couplers to the telephone line without official postal approval. The postal officials seized the devices and the home computers (Chaos Computer Club 1987). The young people visited by the Bundespost had experimented with their home computers. They had connected them to the telephone net- work to enable other home computer owners to call them and exchange data and texts via the telephone line. Thus, the home computer was no longer just an isolated device, but a communication tool from which the callers could connect to each other. On such a bulletin board system, home computer users could exchange files, have discussions and gain ac- cess to information otherwise difficult to get. For some politically-minded computer enthusiasts of the 1980s like the members of the Chaos Computer Club in Hamburg, BBS seemed the ideal medium for a “digital counterpublic”. BBS were a freely accessible and non-censorable medium, ideal for publishing politically relevant in- formation which otherwise would have remained unpublished. BBS and Media in Action | Issue 1/2017 | http://mediainaction.uni-siegen.de 116 Thematic Focus : Fundaments of Digitisation electronic telecommunication therefore had a huge democratic potential for them.
    [Show full text]
  • Digital Image Steganalysis Techniques
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 4, October 2013 A Review on Digital Image Steganalysis Techniques Categorised by Features Extracted Rita Chhikara, Latika Singh ITM University, Gurgaon, Haryana, India presence or absence of embedded message. Images are Abstract- The overwhelming growth in communication often used as a carrier because of their extensive technology and usage of public domain channels (i.e. availability with high resolution of pixels. Data Internet) has greatly facilitated transfer of data. However, embedding in a multimedia carrier like image may such open communication channels have greater vulnerability involve varying parameters such as different image to security threats causing unauthorized information access. Steganography is the art of hiding and transmitting data formats, different embedding algorithms and various through apparently innocuous carriers such as text, image, steganographic keys. This has made steganalysis a more audio or video in an effort to conceal the existence of the difficult and challenging task. Earliest work on secret data and the fact that communication is even taking steganalysis was reported by Johnson and Jajodia [9] and place. Steganalysis is an attack on steganography. Both Chandramouli et al.[10]. It has gained prominence in steganography and steganalysis have received a great deal of national security and forensic sciences as detection of attention from law enforcement and the media. In the past hidden messages can lead to the prevention of disastrous years many powerful and robust methods of steganography security incidents. Algorithms for Steganalysis are and steganalysis have been reported in the literature.
    [Show full text]
  • Use of Mobile Technology by Adults Who Use Augmentative and Alternative Communication: Voices from Two Countries
    Volume 11, Summer 2017 Assistive Technology Outcomes and Benefits Volume 11, Summer 2017, pp. 66-81 Copyright ATIA 2017 ISSN 1938-7261 Available online: www.atia.org/atob Use of Mobile Technology by Adults Who Use Augmentative and Alternative Communication: Voices from Two Countries Diane Nelson Bryen, PhD Professor Emerita, Temple Univeristy – USA Juan Bornman, PhD Professor and Director, Center for Augmentative and Alternative Communication, University of Pretoria – South Africa John Morris, PhD Clinical Research Scientist, Shepherd Center – USA Enid Moolman Lecturer, Center for Augmentative and Alternative Communication, University of Pretoria – South Africa F. Mark Sweatman, PhD Data Analyst, Shepherd Center – USA Abstract are important, but some Find it diFFicult to use requiring a variety of modifications. More than 50% Mobile technology – cell phones, smartphones and of participants From each country used their mobile tablets – has expanded communication and social devices For text-messaging, web browsing, keeping interaction, commerce, and access to inFormation a directory oF contacts, voice calling, sharing photos for many people with disabilities. Little is known or videos online, listening to music, and social about the use of these mainstream technologies by networking. Recommendations are made For adults who use augmentative and alternative industry and people who rely on AAC. communication (AAC). InFormation comparing their use by adults who rely on AAC From both high- Keywords: augmentative and alternative income and low or middle-income countries is communication, AAC, cell phones, mobile technol- nonexistent. This article presents data on the use oF ogy mobile technology by 38 adults From the United States and 30 adults From South AFrica who use AAC.
    [Show full text]
  • Multitech Bluetooth Network Access Point Administrator Guide S000619 Rev 1.2 for Use with Model: MT200B2E
    MultiTech Bluetooth® Network Access Point Administrator Guide MultiTech Bluetooth Network Access Point Administrator Guide S000619 Rev 1.2 For use with model: MT200B2E Copyright This publication may not be reproduced, in whole or in part, without the specific and express prior written permission signed by an executive officer of Multi-Tech Systems, Inc. All rights reserved. Copyright © 2015 by Multi-Tech Systems, Inc. Multi-Tech Systems, Inc. makes no representations or warranties, whether express, implied or by estoppels, with respect to the content, information, material and recommendations herein and specifically disclaims any implied warranties of merchantability, fitness for any particular purpose and non- infringement. Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes. Trademarks MultiTech, MultiConnect, and the MultiTech logo are registered trademarks of Multi-Tech Systems, Inc. Bluetooth is a registered trademark of Bluetooth SIG, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies. Contacting MultiTech Knowledge Base The Knowledge Base provides immediate access to support information and resolutions for all MultiTech products. Visit http://www.multitech.com/kb.go. Support Portal To create an account and submit a support case directly to our technical support team, visit: https://support.multitech.com Support Business Hours: M-F, 9am to 5pm CT Country By Email By Phone Europe, Middle East, Africa: [email protected] +(44) 118 959 7774 U.S., Canada, all others: [email protected] (800) 972-2439 or (763) 717-5863 World Headquarters Multi-Tech Systems, Inc.
    [Show full text]
  • Multimedia, Internet, On-Line
    Section IV: Multimedia, the Internet, and On-Line Services High-End Digital Video Applications Larry Amiot Electronic and Computing Technologies Division Argonne National Laboratory The emphasis of this paper is on the high-end applications Internet and Intranet that are driving digital video. The research with which I am involved at Argonne National Laboratory is not done on dig- The packet video networks which currently support many ital video per se, but rather on how the research applications applications such as file transfer, Mbone video (talking at the laboratory drive its requirements for digital video. The heads), and World Wide Web browsing are limiting for high- paper will define what digital video is, what some of its com- quality video because of the low throughput one can achieve ponents are, and then discuss a few applications that are dri- via the Internet or intranets. Examples of national packet ving the development of these components. The focus will be switched networks developed in the last several years include on what digital video means to individuals in the research the National Science Foundation Network (NSFNet). The and education community. Department of Energy had its own network called ESNET, and the National Aeronautics and Space Administration The Digital Video Environment (NASA) had a network as well. Recently, the NSFNet was de- commissioned, and commercial interests are now starting to In 1996, a group of people from several universities in the fill that void. Research and education communities are find- Midwest and from Argonne formed a Video Working Group. ing, however, that this new commercial Internet is too re- This body tried to define the areas of digital video of impor- stricting and does not meet their throughput requirements; it tance to their institutions.
    [Show full text]