Masondentinger Umn 0130E 1

Total Page:16

File Type:pdf, Size:1020Kb

Masondentinger Umn 0130E 1 The Nature of Defense: Coevolutionary Studies, Ecological Interaction, and the Evolution of 'Natural Insecticides,' 1959-1983 A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Rachel Natalie Mason Dentinger IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Mark Borrello December 2009 © Rachel Natalie Mason Dentinger 2009 Acknowledgements My first thanks must go to my advisor, Mark Borrello. Mark was hired during my first year of graduate school, and it has been my pleasure and privilege to be his first graduate student. He long granted me a measure of credit and respect that has helped me to develop confidence in myself as a scholar, while, at the same time, providing incisive criticism and invaluable suggestions that improved the quality of my work and helped me to greatly expand its scope. My committee members, Sally Gregory Kohlstedt, Susan Jones, Ken Waters, and George Weiblen all provided valuable insights into my dissertation, which will help me to further develop my own work in the future. Susan has given me useful advice on teaching and grant applications at pivotal points in my graduate career. Sally served as my advisor when I first entered graduate school and has continued as my mentor, reading nearly as much of my work as my own advisor. She never fails to be responsive, thoughtful, and generous with her attention and assistance. My fellow graduate students at Minnesota, both past and present, have been a huge source of encouragement, academic support, and fun. Even after I moved away from Minneapolis, I continued to feel a part of this lively and cohesive group of colleagues. The sense of camaraderie created by the Minnesota connection is undeniable, and I anticipate many more years of intellectual exchange and friendship with these colleagues, especially Georgina Montgomery, Christine Manganaro, and Nathan Crowe. Most importantly, I thank my lucky stars that I entered the history of science and technology program in the same cohort as Gina Rumore. I can't even imagine what i graduate school would have been like without her. I am proud to have shared these years with this great historian, role model for balancing motherhood and scholarship, and dear friend. Support for my graduate work has come from the Program in the History of Science and Technology, which employed me as a teaching assistant for three years. This support was much more than financial—in particular, my experiences as a teaching assistant for Sally Gregory Kohlstedt, Susan Jones, and Mark Borrello enriched me as a scholar and as a teacher. Further financial support for both living and research expenses came from the University of Minnesota Graduate School. My graduate program and the Graduate School, in addition to the National Science Foundation (Doctoral Dissertation Research Improvement Grant #0724244), all provided the funds that enabled me travel to various corners of the United States, visiting archives and conducting oral history interviews. The generosity of my interview subjects, in taking time out of their invariably busy schedules to share their experiences and insight with me, can't be underestimated. Thank you, May Berenbaum, Paul Ehrlich, Paul Feeny, Dan Janzen, and Peter Raven. In addition, the archivists and librarians in charge of many collections have been extremely helpful—but none more so than Laurie Hannah of the C.H. Muller Library in the Cheadle Center for Biodiversity and Ecological Restoration, who opened the C.H. Muller collection and her own home to me when I traveled to Santa Barbara for the first leg of my dissertation research in 2007. Both she and Jennifer Thorsch made this one of the most satisfying and useful archival trips of my graduate research. ii My friends and family deserve much credit for their unfailing support of my academic pursuits, even when the purpose of spending so much time in school may not have always seem entirely clear to them! I often feel unworthy of the faith that these loved ones bestow on me. I sorely wish that I could have shared this success with my deeply missed grandmother, Lee. Nevertheless, her presence at my dissertation defense could be felt with the amazing showing that my fantastic family made in support of my work. Thanks for coming and cheering me on. My in-laws, the Dentingers, and my oldest and dearest friends, especially Angela and Beth, are living proof that the love of true family need not emerge from shared ancestry. Ever important, since the very beginning of my academic career almost three decades ago, has been my mother's steadfast emotional, intellectual, and technical support. Nothing seems to deplete her ability to give generously of her love and assistance—even when I call her with a desperate last-minute proofreading request! Together, her certainty of my success and her very practical help and advice have provided the firm foundation from which I still work today. There is no question that the years of my graduate work have been most profoundly shaped and fueled by the love and partnership of my husband, Bryn. A graduate student himself when we first met, he knew just how to encourage me at those moments when I was pretty sure that I was not going to make it past the next milestone. His understanding of my work in the history of science, as well as his own experiences as a scientist, have provided a wellspring of knowledge for me to draw on throughout my dissertation work. For both of us, graduate school was a test of our confidence and our iii resolve, and in facing these challenges jointly, we built our relationship with the mutual confidence and resolve that now carries us into the next phase of our life together. I think that Bryn will agree, though, that in the final stretch of this dissertation, the person most responsible for urging me on to completion was one that I have yet to meet—the baby in my belly, whose due date fast approaches now. Thank you, both Baby and Bryn, for helping me keep things in perspective during those times when it's been all too easy to become overwhelmed by the work at hand. iv This dissertation is dedicated to Bryn and to Baby M.D., whom we can't wait to meet! v Table of Contents iv List of Figures 1 Introduction 13 Chapter One: Molecularizing Plant Compounds, Evolutionizing Insect-Plant Relationships: Gottfried S. Fraenkel and the physiological study of insect feeding in the 1950s 56 Chapter Two: Selection, Natural or Unnatural: The evolution of insecticide resistance and the emergence of coevolutionary theory in the 1960s 96 Chapter Three: Biochemical interactions as adaptations: Closing the gap between evolution and ecology with coevolutionary research 148 Chapter Four: Collaboration and Conflict Where Plants and Insects Meet: Professional meetings and persuasive metaphors bring together botany and entomology 194 Chapter Five: "When is it coevolution?": Expansion and reform in coevolutionary theory from the 1970s onward 247 Conclusion 254 Bibliography vi List of Figures 19 Figure 1: Ligatured blowfly larva 35 Figure 2: "Larval growth of Tribolium confusum" 111 Figure 3: Beltian bodies and foliar nectaries of Acacia cornigera 179 Figure 4: Aerial photo of chaparral 235 Figure 5: Cluster analyses relating plant species and their chemistry vii Introduction This dissertation is a historical account of one of the most compelling concepts in evolutionary biology in the last half of the 20th century: the notion that organisms of different species, and even different kingdoms, can evolve in close, reciprocal response to one another. At the same time, it is an examination of some of the ways that human action in the natural world can change how biologists understand nature. Coevolutionary theory has deep roots in the history of biology. Darwin himself was fascinated by what he called “coadaptation,” particularly between flowers and their insect pollinators. These intricately specialized adaptations provided him with evolutionary stories that continue to capture our imaginations in the present day. Yet the field of “coevolutionary studies” was something different. Becoming a vigorous domain of discovery in the 1960s, its practitioners were direct inheritors of the modern evolutionary synthesis of the 1940s. They were also direct inheritors of a natural environment that seemed increasingly on the decline, thanks primarily to the destructive actions of humans. Thus, in my account, knowing—the pursuit of knowledge about the natural world—is inextricably interwoven with doing—the practical business of interacting with and altering the natural world, for better or worse. While this dissertation falls solidly within the domain of the history of biology, it also draws significantly from the recent work of environmental historians, whose interrogation of the relationship between nature and human culture has proved an invaluable resource. Through his history of the Columbia River, Richard White writes of "knowing nature through labor," where the process of work, of exerting the human 1 presence upon nature, whether mediated by technology or not, not only teaches us what nature is, but also embeds human beings in the natural world "so thoroughly that they can never be disentangled."1 Similarly, Edmund Russell's work on the development of chemical warfare, against humans and against insect pests, shows how technology transformed our views of both nature and of ourselves. In the past, "we have seen war and interactions with nature as separate, even opposite endeavours," Russell writes, but "the control of nature expanded the scale of war, and war expanded the scale on which people controlled nature. More specifically, the control of nature formed one root of total war, and total war helped expand the control of nature to the scale rued by modern environmentalists."2 Critically, both Russell and White explore the multiplicity of meanings of "nature," revealing permeability in the supposedly reliable boundary between the natural and the technological.
Recommended publications
  • History of Science Society Annual Meeting San Diego, California 15-18 November 2012
    History of Science Society Annual Meeting San Diego, California 15-18 November 2012 Session Abstracts Alphabetized by Session Title. Abstracts only available for organized sessions. Agricultural Sciences in Modern East Asia Abstract: Agriculture has more significance than the production of capital along. The cultivation of rice by men and the weaving of silk by women have been long regarded as the two foundational pillars of the civilization. However, agricultural activities in East Asia, having been built around such iconic relationships, came under great questioning and processes of negation during the nineteenth and twentieth centuries as people began to embrace Western science and technology in order to survive. And yet, amongst many sub-disciplines of science and technology, a particular vein of agricultural science emerged out of technological and scientific practices of agriculture in ways that were integral to East Asian governance and political economy. What did it mean for indigenous people to learn and practice new agricultural sciences in their respective contexts? With this border-crossing theme, this panel seeks to identify and question the commonalities and differences in the political complication of agricultural sciences in modern East Asia. Lavelle’s paper explores that agricultural experimentation practiced by Qing agrarian scholars circulated new ideas to wider audience, regardless of literacy. Onaga’s paper traces Japanese sericultural scientists who adapted hybridization science to the Japanese context at the turn of the twentieth century. Lee’s paper investigates Chinese agricultural scientists’ efforts to deal with the question of rice quality in the 1930s. American Motherhood at the Intersection of Nature and Science, 1945-1975 Abstract: This panel explores how scientific and popular ideas about “the natural” and motherhood have impacted the construction and experience of maternal identities and practices in 20th century America.
    [Show full text]
  • Reproductive Conflict Among Workers of the Ant Species Pseudomyrmex Gracilis (Hymenoptera: Formicidae)
    Reproductive conflict among workers of the ant species Pseudomyrmex gracilis (Hymenoptera: Formicidae) DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER FAKULTÄT FÜR BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Volker Schmid aus Wolfschlugen im Jahr 2012 Das Promotionsgesuch wurde eingereicht am: 20.06.2012 Die Arbeit wurde angeleitet von: Prof. Dr. Jürgen Heinze Unterschrift: Für Simone “Under carefully controlled experimental conditions, an animal will behave as it damned well pleases.” Harvard Law of Animal Behaviour Volker Schmid – Reproductive conflict in Pseudomyrmex gracilis (Dissertation 2012) Contents 1. Introduction .......................................................................................................................... 2 1.1 Inter- and intraspecific conflicts ...................................................................................... 2 1.2 Eusociality – cooperation and conflict ............................................................................. 3 1.3 Conflicts over reproduction in social Hymenoptera ........................................................ 4 1.4 Aims of the present study .................................................................................................. 6 2. Material and Methods .......................................................................................................... 7 2.1 Microsatellite primer establishment ................................................................................
    [Show full text]
  • Scientific Freedom and the Public Good Prominent Endorsers (In Alphabetical Order)
    Scientific Freedom and the Public Good Prominent Endorsers (in alphabetical order) On February 14, 2008, a group of prominent scientists called on the U.S. government to establish conditions that would enable federal scientists to produce the scientific knowledge that is needed by a government dedicated to the public good. Please visit www.ucsusa.org/scientificfreedom for more information. Lewis Branscomb Professor Emeritus, John F. Kennedy School of Government, Harvard University Adjunct Professor, School of International Relations and Pacific Studies, University of California at San Diego Research Associate, Scripps Institution of Oceanography, University of California at San Diego Director, U.S. National Bureau of Standards (now the National Institute for Standards and Technology), 1969- 1972 Chair, National Science Board, 1980-1984 Chief Scientist and Vice President, IBM, 1972-1986 Member, National Academy of Sciences Member, National Academy of Engineering Member, Institute of Medicine Rita Colwell Chairman, Canon US Life Sciences, Inc. Distinguished Professor, University of Maryland College Park and Bloomberg School of Public Health, Johns Hopkins University Former Director, National Science Foundation, 1998-2004 Past President, American Association for the Advancement of Science Member, National Science Board, 1984-1990 National Medal of Science, 2006 Member, National Academy of Sciences Thomas Eisner Jacob Gould Schurman Professor Emeritus of Chemical Ecology, Cornell University Director, Cornell Institute for Research in Chemical Ecology National Medal of Science, 1994 Member, National Academy of Sciences James Fay Professor Emeritus of Mechanical Engineering, Massachusetts Institute of Technology Chair, Massachusetts Port Authority, 1972-1977 Chair, Air Pollution Control Commission of the City of Boston, 1969-1972 Member, National Academy of Engineering Richard Garwin IBM Fellow Emeritus, Thomas J.
    [Show full text]
  • Ballooning Spiders: the Case for Electrostatic Flight
    Ballooning Spiders: The Case for Electrostatic Flight Peter W. Gorham Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822. We consider general aspects of the physics underlying the flight of Gossamer spiders, also known as balloon- ing spiders. We show that existing observations and the physics of spider silk in the presence of the Earth’s static atmospheric electric field indicate a potentially important role for electrostatic forces in the flight of Gossamer spiders. A compelling example is analyzed in detail, motivated by the observed “unaccountable rapidity” in the launching of such spiders from H.M.S. Beagle, recorded by Charles Darwin during his famous voyage. Observations of the wide aerial dispersal of Gossamer spi- post, and was quickly borne out of sight. The day was hot and ders by kiting or ballooning on silken threads have been de- apparently quite calm...” scribed since the mid-19th century [1–4]. Remarkably, there Darwin conjectured that imperceptible thermal convection are still aspects of this behavior which remain in tension with of the air might account for the rising of the web, but noted aerodynamic theories [5, 6] in which the silk develops buoy- that the divergence of the threads in the latter case was likely ancy through wind and convective turbulence. Several ob- to be due to some electrostatic repulsion, a theory supported served aspects of spider ballooning are difficult to explain by observations of Murray published in 1830 [2], but earlier in this manner: the fan shaped structures that multi-thread
    [Show full text]
  • Evidence for Nanocoulomb Charges on Spider Ballooning Silk
    PHYSICAL REVIEW E 102, 012403 (2020) Evidence for nanocoulomb charges on spider ballooning silk E. L. Morley1,* and P. W. Gorham 2,† 1School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom 2Department of Physics & Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, Hawaii 96822, USA (Received 10 December 2019; revised 5 March 2020; accepted 6 March 2020; published 9 July 2020) We report on three launches of ballooning Erigone spiders observed in a 0.9m3 laboratory chamber, controlled under conditions where no significant air motion was possible. These launches were elicited by vertical, downward-oriented electric fields within the chamber, and the motions indicate clearly that negative electric charge on the ballooning silk, subject to the Coulomb force, produced the lift observed in each launch. We estimate the total charge required under plausible assumptions, and find that at least 1.15 nC is necessary in each case. The charge is likely to be nonuniformly distributed, favoring initial longitudinal mobility of electrons along the fresh silk during extrusion. These results demonstrate that spiders are able to utilize charge on their silk to attain electrostatic flight even in the absence of any aerodynamic lift. DOI: 10.1103/PhysRevE.102.012403 I. INTRODUCTION nificant upward components to the local wind velocity distri- bution; whether actual wind momentum spectra provide the The phenomenon of aerial dispersal of spiders using required distributions is still unproven, particularly for takeoff strands of silk often called gossamer was identified and stud- conditions. Even so, recent detailed observations of spider ied first with some precision by Martin Lister in the late 17th ballooning analyzed exclusively in terms of aerodynamic century [1], followed by Blackwall in 1827 [2], Darwin [3]on forces [12] provide plausible evidence that larger spiders can the Beagle voyage, and a variety of investigators since [4–7].
    [Show full text]
  • 1 Restoring Scientific Integrity in Policy Making February 18, 2004
    Restoring Scientific Integrity in Policy Making February 18, 2004 Science, like any field of endeavor, relies on freedom of inquiry; and one of the hallmarks of that freedom is objectivity. Now, more than ever, on issues ranging from climate change to AIDS research to genetic engineering to food additives, government relies on the impartial perspective of science for guidance. President George H.W. Bush, April 23, 1990 Successful application of science has played a large part in the policies that have made the United States of America the world’s most powerful nation and its citizens increasingly prosperous and healthy. Although scientific input to the government is rarely the only factor in public policy decisions, this input should always be weighed from an objective and impartial perspective to avoid perilous consequences. Indeed, this principle has long been adhered to by presidents and administrations of both parties in forming and implementing policies. The administration of George W. Bush has, however, disregarded this principle. When scientific knowledge has been found to be in conflict with its political goals, the administration has often manipulated the process through which science enters into its decisions. This has been done by placing people who are professionally unqualified or who have clear conflicts of interest in official posts and on scientific advisory committees; by disbanding existing advisory committees; by censoring and suppressing reports by the government’s own scientists; and by simply not seeking independent scientific advice. Other administrations have, on occasion, engaged in such practices, but not so systematically nor on so wide a front. Furthermore, in advocating policies that are not scientifically sound, the administration has sometimes misrepresented scientific knowledge and misled the public about the implications of its policies.
    [Show full text]
  • Behavioral Flexibility in Primates: Causes and Consequences DEVELOPMENTS in PRIMATOLOGY: PROGRESS and PROSPECTS
    Behavioral Flexibility in Primates: Causes and Consequences DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS Series Editor: Russell H. Tuttle University of Chicago, Chicago, Illinois This peer-reviewed book series will meld the facts of organic diversity with the continuity of the evolutionary process. The volumes in this series will exemplify the diversity of theoretical perspectives and methodological approaches currently employed by primatologists and physical anthropologists. Specific coverage includes: primate behavior in natural habitats and captive settings; primate ecology and conservation; functional morphology and developmental biology of primates; primate systematics; genetic and phenotypic differences among living primates; and paleoprimatology. ALL APES GREAT AND SMALL VOLUME I: AFRICAN APES Edited by Biruté M.F. Galdikas, Nancy Erickson Briggs, Lori K. Sheeran, Gary L. Shapiro and Jane Goodall THE GUENONS: DIVERSITY AND ADAPTATION IN AFRICAN MONKEYS Edited by Mary E. Glenn and Marina Cords ANIMAL MINDS, HUMAN BODIES By W.A. Hillix and Duane Rumbaugh COMPARATIVE VERTEBRATE COGNITION Edited by Lesley J. Rogers and Gisela Kaplan ANTHROPOID ORIGINS: NEW VISIONS Edited by Callum F. Ross and Richard F. Kay MODERN MORPHOMETRICS IN PHYSICAL ANTHROPOLOGY Edited by Dennis E. Slice BEHAVIORAL FLEXIBILITY IN PRIMATES: CAUSES AND CONSEQUENCES By Clara B. Jones Behavioral Flexibility in Primates: Causes and Consequences CLARA B. JONES Fayetteville State University Fayetteville, North Carolina Theoretical Primatology Project Fayetteville, North Carolina Community Conservation, Inc. Gays Mills, Wisconsin Library of Congress Cataloging-in-Publication Data Jones, Clara B. Behavioral flexibility in primates : causes and consequences / Clara B. Jones. p. cm.—(Developments in primatology) Includes bibliographical references (p. ). ISBN 0-387-23297-4 1. Primates—Behavior.
    [Show full text]
  • UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society Permalink https://escholarship.org/uc/item/4pm302q6 Author Wright, Colin Morgan Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Colin M. Wright Committee in charge: Professor Jonathan Pruitt, Chair Professor Erika Eliason Professor Thomas Turner June 2018 The dissertation of Colin M. Wright is approved. ____________________________________________ Erika Eliason ____________________________________________ Thomas Turner ____________________________________________ Jonathan Pruitt, Committee Chair April 2018 ACKNOWLEDGEMENTS I would like to thank my Ph.D. advisor, Dr. Jonathan Pruitt, for supporting me and my research over the last 5 years. I could not imagine having a better, or more entertaining, mentor. I am very thankful to have had his unwavering support through academic as well as personal challenges. I am also extremely thankful for all the members of the Pruitt Lab (Nick Keiser, James Lichtenstein, and Andreas Modlmeier), as well as my cohorts at both the University of Pittsburgh and UCSB that have been my closest friends during graduate school. I appreciate Dr. Walter Carson at the University of Pittsburgh for being an unofficial second mentor to me during my time there. Most importantly, I would like to thank my family, Rill (mother), Tom (father), and Will (brother) Wright.
    [Show full text]
  • Nhbs Monthly Catalogue New and Forthcoming Titles Issue: 2013/01 January 2013 [email protected] +44 (0)1803 865913
    nhbs monthly catalogue new and forthcoming titles Issue: 2013/01 January 2013 www.nhbs.com [email protected] +44 (0)1803 865913 Welcome to the January 2013 edition of the NHBS Monthly Catalogue. This monthly Zoology: update contains all of the wildlife, science and environment titles added to nhbs.com in Mammals the last month. Birds Editor's Picks - New in Stock this Month Reptiles & Amphibians Fishes ● Africa: Eye to Eye with the Unknown Invertebrates ● The Aloe of Madagascar / Les Aloe de Madagascar Palaeontology ● Guide to the UK Cetaceans and Seals Marine & Freshwater Biology ● Guides sur la Diversite Biologique de Madagascar General Natural History ● Illustrated Guide to Home Biology Experiments Regional & Travel ● The Natural History of Canadian Mammals ● The Natural History of the Crustacea Vol 1: Functional Morphology and Diversity Botany & Plant Science ● Natural History of Rangitoto Island Animal & General Biology ● Mammals of South Asia, Volume 1 Evolutionary Biology ● Moa: The Life and Death of New Zealand's Legendary Bird Ecology ● The R Book (2nd Edition) Habitats & Ecosystems ● RES Handbook, Volume 5, Part 17d: True Weevils (Part III) Conservation & Biodiversity ● Vegetation Ecology ● Walking Sideways: The Remarkable World of Crabs Environmental Science ● The World Until Yesterday: What Can We Learn from Traditional Societies? Physical Sciences Sustainable Development Data Analysis Find out more about services for libraries and organisations: NHBS LibraryPro Reference Best wishes, -The NHBS Team View this Monthly Catalogue as a web page or save/print it as a .pdf document. Mammals A Guide to the Mammals of China (Pocket Edition) 432 pages | 384 colour illustrations, 558 Andrew T Smith, Yan Xie and Federico Gemma maps | China's breathtaking diversity of natural habitats – from mountains and deserts to grasslands Paperback | NYP 05/2013 | and lush tropical forests – is home to more than 10 per cent of the world's mammal species.
    [Show full text]
  • Swollen-Thorn Acacias of Central America
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 13 Swollen-Thorn Acacias of Central America Daniel H. Janzen SMITHSONIAN INSTITUTION PRESS City of Washington 1974 ABSTRACT Janzen, Daniel H. Swollen-Thorn Acacias of Central America. Smithsonian Contributions to Botany, number 13, 131 pages, 119 figures, 1974.-This nomen- clatural, taxonomic, and ecological treatment of 11 Central American obligate ant-acacias (Acacia allenii, A. chiapensis, A. collinsii, A. cookii, A. cornigera, A. gentlei, A. globulifera, A hindsii, A nzayana, A. melanoceras, and A. sphaero- cephala) and one quasi-obligate ant-acacia (Acacia ruddiae) is based on ex- tensive field study from 1963 to 1972 and on herbarium specimens where of use. 7 he population boundaries of all species are mapped and described with respect to ecological parameters. Morphological variation, details of the interaction with the ants, and acacia reproductive biology are presented for most species. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution‘s annual report, Srnithsonian Year. SI PRESSNUMBER 4817. SERIESCOVER DESIGN: Leaf clearing from the Katsura tree Cercidiphyllurn japonicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Janzen, Daniel H: Swollen-thorn acacias of Central America. (Smithsonian contributions to botany, no. 13) Bibliography: p. 1. Acacia. 2. Ants-Central America. 3. Botany-Central America-Ecology. I. Title. 11. Series: Smithsonian Institution. Smithsonian contributions to botany, no. 13. QKl.S27 no. 13. [QK495.L52] 581’.08s [583’.321] 73-4401 For sale by the Superintendent of Documents, US. Government Printing O5ce Washington, D.C. 20402 . Price $2.35 (paper cover) Contents Page Introduction ..................................................
    [Show full text]
  • A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1950–1999)
    A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1950{1999) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 25 August 2019 Version 1.00 Title word cross-reference 14 [Kam94]. 10 [TNN71]. 13 [Kai70, Shi70]. 1398 [Kam71]. 1772 [Rau73]. 1777 [Sio51]. 1786 [CR52]. 1790s [Dur87]. 1875 [Ros75]. 1916 [Bro85]. 1920s [GS86]. 1930s [GS86]. 1940s [Bir93a]. 1956 [Kro57, Sel56]. 1959 [Ano60m]. 1980s [Gar80]. 1988 [Hea88]. 1991 [Gom95]. 1993 [McK94]. 2000-Year-Old [Nor73]. 25 [Hea88, McK94]. 27 [Kam71]. 2nd [vH93]. 3.7.12-14 [Dum63b]. 3.7.7-10 [Dum63b]. 406 [Mer88]. 440 [Mer84]. 1 2 546 [Gre92]. 600 [Ost95]. A. [Pel95]. A.D. [Con58]. Aaron [Woo99]. Abb´e [Bei51, Chi50, Per53, Per58]. Abdallah [RT99]. Abdication [Hor65]. Abdus [Dys99]. Abilities [Thu50]. Abode [Men69a]. Abolitionist [Sch71]. Aboriginal [HK77]. Abroad [Wri56]. Abrogation [Ega71]. ABSCAM [Gri82]. Absentee [Mor74a]. Abstract [dT58b]. Academic [Car57a, Gid50, Ing57, Tay57]. Academies [Adr56, Fr¨a99]. Academy [Dup57, DM65, Rai92, Pen50]. Acadia [Olm60]. Acceleration [Dic81]. Accelerators [Sim87]. Acceptance [Lew56b]. Accessibility [Ano50a, Ano50b, Ano50c, Ano50d, Ano50e, Ano50f, Ano51a, Ano51b, Ano51c, Ano51d, Ano51e, Ano51f, Ano52a, Ano52b, Ano52c, Ano52d, Ano52e, Ano52f, Ano53a, Ano53b, Ano53c, Ano53d, Ano53e,
    [Show full text]
  • Thank You to Our 2016 Donors
    THANK YOU TO OUR 2016 DONORS Lifetime Giving Society Rush Holt and Celeste M. Rohlfing Roger and Terry Beachy Mary E. Clutter The Lifetime Giving Margaret Lancefield Robert L. Smith Jr. Cynthia M. Beall Morrel H. Cohen Society recognizes Alice S. Huang and Daniel Vapnek Gary and Fay Beauchamp Donald G. Comb individuals who have David Baltimore contributed a cumulative Raymond G. Beausoleil Jeffrey A. Cooper total of $100,000 or more $2,500-$4,999 $25,000- $49,999 Nicholas A. Begovich Jonathan C. Coopersmith during the course of their Anonymous, in memory Kenneth A. Cowin involvement of Myrtle Ray Zeiber, Jerry A. Bell and Vincent D’Aco with AAAS. Benjamin C. Hammett Jill Sharon Sheridon, Mary Ann Stepp William H. Danforth Tucker Hake Alan and Agnes Leshner May R. Berenbaum Peter B. Danzig Kathleen S. Berger Edwin J. Adlerman Lawrence H. Linden Margaret M. Betchart Vincent Davisson Stephen and Janelle Ersen Arseven Fodor David E. Shaw and James Bielenberg David H. de Weese Beth Kobliner Shaw David R. Atkinson Richard M. Forester † Dennis M. Bier Jeffrey S. Dean Drs. Larry and Jan Allison Bigbee Sibyl R. Golden and $10,000- $24,999 Baldwin John and Mary Deane the Golden Family Thomas R. and Johanna Amy Blackwell Helena L. Chum George E. DeBoer Rush Holt and K. Baruch Peter D. Blair Hans G. Dehmelt Margaret Lancefield Jonathan Bellack Rita R. and Jack H. Colwell C. John Blankley Charles W. Dewitt Alan and Agnes Leshner Floyd E. Bloom Troy E. Daniels Carla Blumberg Ruth A. Douglas Lawrence H. Linden Fred A.
    [Show full text]