Design of a 4-Seat, General Aviation, Electric Aircraft

Total Page:16

File Type:pdf, Size:1020Kb

Design of a 4-Seat, General Aviation, Electric Aircraft Design of a 4-Seat, General Aviation, Electric Aircraft a project presented to The Faculty of the Department of Aerospace Engineering San José State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Viralkumar Rathod May 2018 approved by Dr. Nikos J. Mourtos Faculty Advisor 2 ABSTRACT The proposed electric aircraft was designed to address the major challenges facing by electric aviation. The aircraft was designed to meet the flight parameters like 4 passenger capacities (including pilot), a range of 400 nm, a payload of 800 lbs, and a cruise speed of 130 knots. Current battery technology cannot make this type of aircraft feasible so, the proposed aircraft was designed based on future prediction of technologies. The feasibility of an electric propulsion system was examined along with aerodynamic and structural improvements aiming at reducing drag and structural weight. For an aircraft such as this, a large amount of research was done on experimental and current batteries that could possibly be sufficient. The chosen power source for proposed aircraft is combination of Lithium Ion and Aluminium Air cells with the rubber motor. The proposed aircraft was designed to meet the FAR-23 requirements. The methods were used throughout the design process was based on texts as Roskam, Sadraey, and Hepperle. The major design features include a tapered wing, a front mounted single propeller engine, fixed tricycle landing gear, and a T-tail empennage. By showing opportunities in the field of electrification of aircraft, further research can be better aimed at those topic that are of interest and that require the most progress. 3 Contents CHAPTER 1 ........................................................................................................................................ 12 MISSION SPECIFICATIONS & COMPARATIVE STUDY ........................................................ 12 1.1) MISSION SPECIFICATIONS: ................................................................................................ 13 1.1.1) Mission Profile: ................................................................................................................. 13 1.1.2) Market Analysis: ............................................................................................................... 14 1.1.3) Technical and Economic Feasibility: ................................................................................ 14 1.1.4) Critical Mission Requirements: ........................................................................................ 14 1.2) COMPARATIVE STUDY OF SIMILAR AIRPLANES: ........................................................ 15 1.2.1) Mission Capabilities and Configuration Selection: ........................................................... 15 a) Electro Light-2: ..................................................................................................................... 15 b) Pipistrel Taurus G4: .............................................................................................................. 16 c) NASA Scuba Stingray: ......................................................................................................... 17 d) Lange Aviation Antares 23E: ................................................................................................ 18 e) Yuneec International E430: .................................................................................................. 19 1.2.2) Comparison of Important Design Parameters: .................................................................. 20 1.3) DISCUSSION: .......................................................................................................................... 20 CHAPTER 2 ........................................................................................................................................ 21 CONFIGURATION DESIGN ........................................................................................................... 21 2.1) COMPARATIVE STUDY OF SIMILAR AIRPLANES: ........................................................ 22 2.1.1) Comparison of Weights, Performance and Geometry of Similar Airplanes: .................... 22 2.1.2) Configuration Comparison of Similar Airplanes: ............................................................. 22 a) Electro Light-2: ..................................................................................................................... 23 b) Pipistrel Taurus G4: .............................................................................................................. 24 c) NASA Scuba Stingray: ......................................................................................................... 24 d) Lange Aviation Antares 23E: ................................................................................................ 26 e) Yuneec International E430: .................................................................................................. 27 2.2) DISCUSSION: .......................................................................................................................... 28 2.3) CONFIGURATION SELECTION: .......................................................................................... 29 2.3.1) Overall Configuration: ...................................................................................................... 29 2.3.2) Wing Configuration: ......................................................................................................... 29 2.3.3) Empennage Configuration: ............................................................................................... 29 2.3.4) Integration of the Propulsion System: ............................................................................... 30 2.3.5) Landing Gear Disposition: ................................................................................................ 30 2.3.6) Proposed Configuration: ................................................................................................... 31 CHAPTER 3 ........................................................................................................................................ 32 WEIGHT SIZING AND WEIGHT SENSITIVITIES..................................................................... 32 4 3.1) MISSION WEIGHT ESTIMATES: ......................................................................................... 33 3.1.1) Database for Take-off and Empty Weights of Similar Airplanes: .................................... 33 3.1.2) Determination of Regression Coefficients A and B: ......................................................... 33 3.2) DETERMINATION OF MISSION WEIGHTS: ...................................................................... 35 3.2.1) Manual Calculation of Mission Weights: ......................................................................... 35 3.2.2) Calculation of Mission Weights using the Advanced Aircraft Analysis (AAA) Program: 43 3.3) RANGE SENSITIVITIES: ....................................................................................................... 45 3.3.1) Manual Calculation of Range Sensitivities: ...................................................................... 46 3.3.2) Calculation of Take-off Weight Sensitivities using the AAA Program: ........................... 48 3.4) TRADE STUDIES: ................................................................................................................... 48 3.5) DISCUSSION: .......................................................................................................................... 51 CHAPTER 4 ........................................................................................................................................ 52 PERFORMANCE CONSTRAINT ANALYSIS .............................................................................. 52 4.1) MANUAL CALCULATIONS OF PERFORMANCE CONSTRINTS: .................................. 53 4.1.1) Stall Speed: ....................................................................................................................... 53 4.1.2) Take-off Distance: ............................................................................................................ 54 4.1.3) Landing Distance: ............................................................................................................. 58 4.1.4) Sizing To Climb Requirements: ........................................................................................ 61 4.1.4.1) A Method for Estimating Drag Polar at Low Speed: ....................................................... 61 4.1.4.2) FAR-23 Climb Requirements: ......................................................................................... 64 4.1.4.3) Sizing to FAR-23 rate-of-climb requirements: ................................................................ 65 4.1.4.4) Sizing to climb gradient requirements: ............................................................................ 66 4.1.5) Sizing to Maneuvering Requirements: .............................................................................. 68 4.1.6) Sizing to Cruise Speed Requirements: .............................................................................. 69 4.1.7) Matching Graph: ............................................................................................................... 70 4.2) CALCULATION OF PERFORMANCE CONSTRAINTS WITH THE AAA PROGRAM: .. 72 4.2.1) Stall
Recommended publications
  • Development of Next Generation Civilian Aircraft
    International Journal of Scientific & Engineering Research Volume 11, Issue 12, December-2020 293 ISSN 2229-5518 Development of Next Generation Civilian Aircraft H Sai Manish Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal, Karnataka, India Abstract Designing a NEXT GENERATION FLYING VEHICLE & its JET ENGINE for commercial air transportation civil aviation Service. Implementation of Innovation in Future Aviation & Aerospace. In the ever-changing dynamics of the world of airspace and technology constant Research and Development is required to adapt to meet the requirement of the passengers. This study aims to develop a subsonic passenger aircraft which is designed in a way to make airline travel economical and affordable to everyone. The design and development of this study aims to i) to reduce the various forces acted on the aircraft thereby reducing the fuel consumption, ii) to utilise proper set of materials and composites to reduce the aircraft weight and iii) proper implementation of Engineering Design techniques. This assessment considers the feasibility of the technology and development efforts, as well as their potential commercial prospects given the anticipated market and current regulatory regime. Keywords Aircraft, Drag reduction, Engine, Fuselage, Manufacture, Weight reduction, Wings Introduction Subsonic airlines have been IJSERthe norm now almost reaching speeds of Mach 0.80, with this into consideration all the commercial passenger airlines have adapted to design and implement aircraft to subsonic speeds. Although high speeds are usually desirable in an aircraft, supersonic flight requires much bigger engines, higher fuel consumption and more advanced materials than subsonic flight. A subsonic type therefore costs far less than the equivalent supersonic design, has greater range and causes less harm to the environment.
    [Show full text]
  • FAA Advisory Circular 20-97B
    Subject: AIRCRAFT TIRE MAINTENANCE Date: 4/18/05 AC No.: 20-97B AND OPERATIONAL PRACTICES Initiated by: AFS-306 Change: 1. PURPOSE. This advisory circular (AC) provides recommended tire care and maintenance practices needed to assure the safety of support personnel and the continued airworthiness of aircraft. Specifically, this AC provides guidance on the installation, inflation, maintenance, and removal of aircraft tires. In addition, this AC provides guidance on those operational practices necessary to maintain safe aircraft operations. This AC is not mandatory and does not constitute a regulation. It is issued for guidance purposes and to outline acceptable tire maintenance and operational practices. In lieu of following this method without deviation, operators may elect to follow an alternative method that has also been found acceptable by the Federal Aviation Administration (FAA). 2. CANCELLATION. AC 20-97A, High-Speed Tire Maintenance and Operational Practices, dated May 13, 1987, is cancelled. 3. RELATED REGULATIONS AND DOCUMENTS. a. Title 14 of the Code of Federal Regulations (14 CFR): (1) Part 21, subpart O, Technical Standard Order Authorizations. (2) Part 23, Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes. (3) Part 25, Airworthiness Standards: Transport Category Airplanes. (4) Part 27, Airworthiness Standards: Normal Category Rotorcraft. (5) Part 29, Airworthiness Standards: Transport Category Rotorcraft. (6) Part 43, Maintenance, Preventive Maintenance, Rebuilding, and Alteration. (7) Part 145, Repair Stations. b. FAA ACs. Copies of the following ACs may be obtained from the U.S. Department of Transportation, Subsequent Distribution Center, Ardmore East Business Center, 3341 Q 75th Avenue, Landover, MD 20785, and may be downloaded at the following Web site: http://www.faa.gov/avr/afs/acs/ac-idx.htm.
    [Show full text]
  • Tethered Fixed-Wing Aircraft to Lift Payloads…
    Tethered Fixed-Wing Aircraft to Lift Payloads: A Concept Enabled by Electric Propulsion David Rancourt Etienne Demers Bouchard Université de Sherbrooke Georgia Institute of Technology 3000 boul. Université – Pavillon P2 275 Ferst Drive NW Sherbrooke, QC Atlanta, GA CANADA USA [email protected] [email protected] Keywords: Electric propulsion, novel aircraft concept, VTOL, hybrid-electric powertrain ABSTRACT Helicopters have been essential to the military as they have been one of the only solutions for air-transporting substantial payloads with no need for complex mile-long runway infrastructures. However, they are fundamentally limited with high fuel consumption and reduced range. A disruptive concept to vertical lift uses tethered fixed-wing aircraft to lift a payload, where multiple aircraft collaborate and fly along a near circular flight path in hover. The Electric-Powered Reconfigurable Rotor concept (EPR2) leverages the recent progress in electric propulsion and modern controls to enable efficient load lifting using fixed-wing aircraft. The novel idea is to replace tethered manned aircraft (with onboard energy, fuel) with electric-powered fixed-wing aircraft with remote energy source to enable efficient collaborative load lifting. This paper presents the conceptual design of a heavy-lifting aircraft concept using electric-powered tethered fixed-wing aircraft for a ~30 metric ton lifting capability. A physics-based multidisciplinary design and simulation environment is used to predict the performance and optimize the aircraft flight path. It is demonstrated that this concept could hover with only 3.01 MW of power yet be able to translate to over 80 kts with minimal power increase by leveraging the benefits of complex non-circular flight paths.
    [Show full text]
  • Comparison of Aircraft Tire Wear with Initial Wheel Rotational Speed
    International Journal of Aviation, Aeronautics, and Aerospace Volume 2 Issue 1 Article 2 3-2-2015 Comparison of Aircraft Tire Wear with Initial Wheel Rotational Speed Abdurrhman A. Alroqi University of Sussex, [email protected] Weiji Wang University of Sussex, [email protected] Follow this and additional works at: https://commons.erau.edu/ijaaa Part of the Aeronautical Vehicles Commons Scholarly Commons Citation Alroqi, A. A., & Wang, W. (2015). Comparison of Aircraft Tire Wear with Initial Wheel Rotational Speed. International Journal of Aviation, Aeronautics, and Aerospace, 2(1). https://doi.org/10.15394/ ijaaa.2015.1043 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in International Journal of Aviation, Aeronautics, and Aerospace by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Comparison of Aircraft Tire Wear with Initial Wheel Rotational Speed Cover Page Footnote The authors would like to acknowledge University of Sussex for its support with the literature and related resources. This article is available in International Journal of Aviation, Aeronautics, and Aerospace: https://commons.erau.edu/ ijaaa/vol2/iss1/2 Alroqi and Wang: Comparison of Aircraft Tire Wear with Initial Wheel Rotational Speed In this paper, the landing impact of an aircraft is described using a physical model of a single wheel in the main landing gear. The purpose of this study is to understand potential tire-life improvements that could be made by reducing abrasive skidding between aircraft tires and runway surfaces immediately after touchdown.
    [Show full text]
  • Design of a Light Business Jet Family David C
    Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends.
    [Show full text]
  • History of Solar Flight July 2008
    History of Solar Flight July 2008 solar airplane aircraft continuous sustainable flight solar-powered solar cells mppt helios Sky-Sailor sun-powered HALE platform solaire avion vol continu dévelopement durable énergie solaire cellules plateforme History of Solar flight André Noth, [email protected] Autonomous Systems Lab, Swiss Federal Institute of Technology Zürich 1. The conjunction of two pioneer fields, electric flight and solar cells The use of electric power for flight vehicles propulsion is not new. The first one was the hydrogen- filled dirigible France in year 1884 that won a 10 km race around Villacoulbay and Medon. At this time, the electric system was superior to its only rival, the steam engine but then with the arrival of gasoline engines, work on electrical propulsion for air vehicles was abandoned and the field lay dormant for almost a century [2]. On the 30th June 1957, Colonel H. J. Taplin of the United Kingdom made the first officially recorded electric powered radio controlled flight with his model “Radio Queen”, which used a permanent-magnet motor and a silver-zinc battery. Unfortunately, he didn’t carry on these experiments. Further developments in the field came from the great German pioneer, Fred Militky, who first achieved a successful flight with a Radio Queen, 1957 free flight model in October 1957. Since this premises, electric flight continuously evolved with constant improvements in the fields of motors and batteries [12]. Three years before Taplin and Militky’s experiments, in 1954, photovoltaic technology was born at Bell Telephone Laboratories. Daryl Chapin, Calvin Fuller, and Gerald Pearson developed the first silicon photovoltaic cell capable of converting enough of the sun’s energy into power to run everyday electrical Gerald Pearson, Daryl Chapin equipment.
    [Show full text]
  • Air-Breathing Engine Precooler Achieves Record-Breaking Mach 5 Performance 23 October 2019
    Air-breathing engine precooler achieves record-breaking Mach 5 performance 23 October 2019 The Synergetic Air-Breathing Rocket Engine (SABRE) is uniquely designed to scoop up atmospheric air during the initial part of its ascent to space at up to five times the speed of sound. At about 25 km it would then switch to pure rocket mode for its final climb to orbit. In future SABRE could serve as the basis of a reusable launch vehicle that operates like an aircraft. Because the initial flight to Mach 5 uses the atmospheric air as one propellant it would carry much less heavy liquid oxygen on board. Such a system could deliver the same payload to orbit with a vehicle half the mass of current launchers, potentially offering a large reduction in cost and a higher launch rate. Reaction Engines' specially constructed facility at the Colorado Air and Space Port in the US, used for testing the innovative precooler of its air-breathing SABRE engine. Credit: Reaction Engines Ltd UK company Reaction Engines has tested its innovative precooler at airflow temperature conditions equivalent to Mach 5, or five times the speed of sound. This achievement marks a significant milestone in its ESA-supported Airflow through the precooler test item in the HTX heat exchanger test programme. UK company Reaction development of the air-breathing SABRE engine, Engines has tested its innovative precooler at airflow paving the way for a revolution in space access temperature conditions equivalent to Mach 5, or five and hypersonic flight. times the speed of sound. This achievement marks a significant milestone in the ESA-supported development The precooler heat exchanger is an essential of its air-breathing SABRE engine, paving the way for a SABRE element that cools the hot airstream revolution in hypersonic flight and space access.
    [Show full text]
  • Design of a Micro-Aircraft Glider
    Design of A Micro-Aircraft Glider Major Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for The Degree of Bachelor of Science Submitted by: ______________________ ______________________ Zaki Akhtar Ryan Fredette ___________________ ___________________ Phil O’Sullivan Daniel Rosado Approved by: ______________________ _____________________ Professor David Olinger Professor Simon Evans 2 Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use. 3 Abstract The goal of this project was to design an aircraft to compete in the micro-class of the 2013 SAE Aero Design West competition. The competition scores are based on empty weight and payload fraction. The team chose to construct a glider, which reduces empty weight by not employing a propulsion system. Thus, a launching system was designed to launch the micro- aircraft to a sufficient height to allow the aircraft to complete the required flight by gliding. The rules state that all parts of the aircraft and launcher must be contained in a 24” x 18” x 8” box. This glider concept was unique because the team implemented fabric wings to save substantial weight and integrated the launcher into the box to allow as much space as possible for the aircraft components. The empty weight of the aircraft is 0.35 lb, while also carrying a payload weight of about 0.35 lb. Ultimately, the aircraft was not able to complete the required flight because the team achieved 50% of its desired altitude during tests.
    [Show full text]
  • General Aviation Aircraft Design
    Contents 1. The Aircraft Design Process 3.2 Constraint Analysis 57 3.2.1 General Methodology 58 1.1 Introduction 2 3.2.2 Introduction of Stall Speed Limits into 1.1.1 The Content of this Chapter 5 the Constraint Diagram 65 1.1.2 Important Elements of a New Aircraft 3.3 Introduction to Trade Studies 66 Design 5 3.3.1 Step-by-step: Stall Speed e Cruise Speed 1.2 General Process of Aircraft Design 11 Carpet Plot 67 1.2.1 Common Description of the Design Process 11 3.3.2 Design of Experiments 69 1.2.2 Important Regulatory Concepts 13 3.3.3 Cost Functions 72 1.3 Aircraft Design Algorithm 15 Exercises 74 1.3.1 Conceptual Design Algorithm for a GA Variables 75 Aircraft 16 1.3.2 Implementation of the Conceptual 4. Aircraft Conceptual Layout Design Algorithm 16 1.4 Elements of Project Engineering 19 4.1 Introduction 77 1.4.1 Gantt Diagrams 19 4.1.1 The Content of this Chapter 78 1.4.2 Fishbone Diagram for Preliminary 4.1.2 Requirements, Mission, and Applicable Regulations 78 Airplane Design 19 4.1.3 Past and Present Directions in Aircraft Design 79 1.4.3 Managing Compliance with Project 4.1.4 Aircraft Component Recognition 79 Requirements 21 4.2 The Fundamentals of the Configuration Layout 82 1.4.4 Project Plan and Task Management 21 4.2.1 Vertical Wing Location 82 1.4.5 Quality Function Deployment and a House 4.2.2 Wing Configuration 86 of Quality 21 4.2.3 Wing Dihedral 86 1.5 Presenting the Design Project 27 4.2.4 Wing Structural Configuration 87 Variables 32 4.2.5 Cabin Configurations 88 References 32 4.2.6 Propeller Configuration 89 4.2.7 Engine Placement 89 2.
    [Show full text]
  • Program Schedule
    Program Schedule AIAA Science and Technology Forum and Exposition 2015 January 05 - 09, 2015 The Program Report was last updated December 18, 2014 at 04:16 PM EST. To view the most recent meeting schedule online, visit https://aiaa-mst15.abstractcentral.com/planner.jsp Monday, January 05, 2015 Time Session or Event Info 8:00 AM-9:00 AM, Osceola Ballroom CD, PLNRY-01. Opening Keynote , Plenary, Forum 9:00 AM-12:30 PM, St. George 112, ISC-01. International Student Conference (Undergraduate Category), Technical Paper, 53rd AIAA Aerospace Sciences Meeting, Chair: Chris Tavares, The Boeing Company Martian RHOVER Feasibility Study J. Fuentes; R. Pankaja 9:00-9:30 AM Kaluarachchi Satellite Formation Control using Differential Drag S.R. Omar; J.M. 9:30-10:00 AM Wersinger Manufacturing of Triaxial Quasi-three-dimensional Composite 10:00-10:30 AM Materials G. Peterson; D. Liu The Design, Fabrication, and Evaluation of Millimeter Wave Lenses 10:30-11:00 AM for Beamed Energy Applications S.E. Sloan Colorimetric hydrogel-based microfluidic assay system to monitor 11:00-11:30 AM malnutrition in a microgravity environment J.K. Tsosie Significance of Constituent Chemical age on Solid Rocket Propellant 11:30-12:00 PM Regression Rates D.J. Dulin; G.S. Gibson 12:00-12:30 PM Aerodynamic Testing and Development of Sunswift eVe S. Ambrose 9:30 AM-12:30 PM, Miami 2, AA-01. Computational Aeroacoustics I, Technical Paper, 53rd AIAA Aerospace Sciences Meeting, Chair: Walter Eversman, Missouri University of Science and Technology A Computational Study of Flow Within Cavities with Complex 9:30-10:00 AM Geometric Features M.F.
    [Show full text]
  • Hero Or the Zero1
    “Hero or the Zero” Chapter 1 A True Story By COL GREGORY MARSTON (ret) Aviation is an exciting profession that has short, intense, high-energy periods that are often followed by fairly routine and even boring phases of flight. Yet, it is important to remember always that you’re flying a machine at relatively high speeds and/or high altitudes versus other man-made equipment like a car. Your happy little pilot bubble can be interrupted in a Nano- second by the rare, heart-stopping, bowel-loosening, emergency that must be dealt with correctly, quickly and coolly or you may die. Sometimes you die, even if you do everything right! This story is about one such moment. I was leading a routine flight of two A-37B “Dragonfly” aircraft on a cool, clear and very dark, early morning at Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona on January 3rd, 1985. The A-37 was a relic from the Vietnam War, a small, green/grey camouflage, two-seat, two-engine, jet aircraft that was used for Attack (dropping bombs) or Forward Air Control (FAC – shooting rockets). As the solo Instructor Pilot (flying in the left seat) the plan was for me to takeoff first, followed 10 seconds later by my wingman (a student in the left seat and his Instructor Pilot in the right side). After takeoff, my wingman he would rejoin on me for a Close Air Support (CAS) training flight. I would lead the two-aircraft flight out to one of the massive bombing ranges located in southern Arizona.
    [Show full text]
  • Aircraft Tire Data
    Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer.
    [Show full text]