Helminthology Nematodes Strongyloides.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Helminthology Nematodes Strongyloides.Pdf HelminthologyHelminthology –– NematodesNematodes StrongyloidesStrongyloides TerryTerry LL DwelleDwelle MDMD MPHTMMPHTM ClassificationClassification ofof NematodesNematodes Subclass Order Superfamily Genus and Species Probable (suborder) prevalence in man Secernentea Rhabditida Rhabditoidea Strongyloides stercoralis 56 million Stronglyloides myoptami Occasional Strongyloides fuelloborni Millions Strongyloides pyocyanis Occasional GeneralGeneral InformationInformation ► PrimarilyPrimarily aa diseasedisease ofof tropicaltropical andand subtropicalsubtropical areas,areas, highlyhighly prevalentprevalent inin Brazil,Brazil, Columbia,Columbia, andand SESE AsiaAsia ► ItIt isis notnot uncommonuncommon inin institutionalinstitutional settingssettings inin temperatetemperate climatesclimates ((egeg mentalmental hospitals,hospitals, prisons,prisons, childrenchildren’’ss homes)homes) ► SeriousSerious problemproblem inin thosethose onon immunosuppressiveimmunosuppressive therapytherapy ► HigherHigher prevalenceprevalence inin areasareas withwith aa highhigh waterwater tabletable GeneralGeneral RecognitionRecognition FeaturesFeatures ► Size;Size; parasiticparasitic femalefemale 2.72.7 mm,mm, freefree livingliving femalefemale 1.21.2 mm,mm, freefree livingliving malemale 0.90.9 mmmm ► EggsEggs –– 5050--5858 XX 3030--3434 umum ► TheThe RhabdiformRhabdiform larvaelarvae havehave aa shortershorter buccalbuccal canalcanal vsvs hookwormhookworm ► LarvaeLarvae havehave aa doubledouble laterallateral alaealae,, smallersmaller thanthan hookwormhookworm ► S.S. fuellobornifuelloborni –– freefree livingliving femalefemale hashas aa distinctdistinct postpost vulvarvulvar constrictionconstriction Manson’s Tropical Diseases, GC Cook, 12th Edition, Saunders, pp 1627 Buccal Space Double Lateral Alae LifeLife CycleCycle ►►DefinitiveDefinitive hosthost SS stercoralisstercoralis -- man,man, dogs,dogs, primatesprimates SS myoptamimyoptami –– nutreanutrea SS fuellobornifuelloborni –– man,man, primatesprimates SS pyocyanispyocyanis –– man,man, raccoonraccoon ►►StageStage leavingleaving thethe bodybody –– RhabdiformRhabdiform larvaelarvae ►►InfectiousInfectious stagestage forfor thethe definitivedefinitive hosthost –– L3L3 filariformfilariform larvaelarvae LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced Strongyloides Forked Tail Alveolar lining Eggs Stronglyloides Adult Infiltrate Larva LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle Intestine Adults mate Penetrates the mucosa Eggs produce 2 molts – 2 weeks Crypts of Lieberkuhn Trachea Life Cycle In bronchial mucosa L1 Rhabditoid Lungs larvae hatch L3 Filariform Larvae Colonic mucosa L3 Filariform Larvae Stool Skin L3 Filariform Larvae Perineal skin Soil L3 Filariform Larvae Warm and moist Soil 24-36 hours Internal Autoinfection L3 Filariform Larvae Free living External Autoinfection rhabditoid adults Soil – Direct Development Male and female – 3-5 days Soil – Indirect Development Eggs produced LifeLife CycleCycle ► All filariform larvae can swim ► Generally strongyloides has a lower prevalence than hookworm ► Strongyloides L3 filariform larvae are not infectious by the oral route except for S fuellobourni ► Adults are more commonly affected than children ► The infection usually occurs through exposure to infected soil ► Transmission by breast milk has been demonstrated in animals and is likely in man ► Prepatent period – 4 weeks ► Patent period - 30 + years ClinicalClinical PresentationPresentation ►►HalfHalf ofof thethe casescases areare mildlymildly symptomaticsymptomatic oror asymptomaticasymptomatic RecurrentRecurrent rashrash –– LarvaeLarvae currenscurrens –– startsstarts fromfrom thethe perianalperianal areaarea andand movesmoves rapidlyrapidly (10(10 cmcm // day)day) toto buttocks,buttocks, thighsthighs andand trunktrunk UrticariaUrticaria GastrointestinalGastrointestinal complaintscomplaints –– mimicsmimics pepticpeptic ulcer,ulcer, RUQRUQ painpain ChronicChronic pulmonarypulmonary symptomssymptoms EosinophiliaEosinophilia ClinicalClinical PresentationPresentation ►►SevereSevere infectioninfection –– immunocompromisedimmunocompromised MayMay causecause fatalfatal hyperinfectionhyperinfection GastrointestinalGastrointestinal –– diarrhea,diarrhea, constipation,constipation, abdominalabdominal pain,pain, nauseanausea andand vomiting,vomiting, malabsorptionmalabsorption (fat,(fat, B12,B12, proteinprotein losinglosing enteropathyenteropathy)) HypereosinophiliaHypereosinophilia resemblingresembling tropicaltropical pulmonarypulmonary eosinophiliaeosinophilia (TPE)(TPE) LeukocytosisLeukocytosis Larvae DifferentialDifferential DiagnosisDiagnosis ►►AscarisAscaris ►►HookwormHookworm ►►SchistosomiasisSchistosomiasis ►►TropicalTropical PulmonaryPulmonary EosinophiliaEosinophilia ►►CutaneousCutaneous LarvaLarva MigransMigrans (CLM)(CLM) ►►VisceraViscera LarvaLarva MigransMigrans (VLM)(VLM) DiagnosisDiagnosis ► StoolStool examinationexamination ► DuodenalDuodenal fluidfluid Enterotest (HDC Corporation, San Jose, CA) Duodenal aspirate via endoscope ► SputumSputum inin disseminateddisseminated infectioninfection ► SerodiagnosisSerodiagnosis EIA 85% sensitive Cross reaction with filaria infections ► EosinophiliaEosinophilia -- >> 500500 // uLuL Hookworm Strongyloides Rhabdiform Larvae Trichostrongylus TreatmentTreatment Drug Adult dosage Pediatric dosage Ivermectin (Drug of 200 ug/kg/d X 1-2 days 200 ug/kg/d X 1-2 days choice) Albendazole (IND drug) 400 mg bid X 7 days 400 mg bid X 7 days Thiabendazole (Alternate) 50 mg/kg/day divided into 50 mg/kg/day divided into q12h doses (maximum 3 q12h doses (maximum 3 gms/day) X 2 days gms/day) X 2 days Consider 5 or more days Consider 5 or more days for disseminated disease for disseminated disease Medical Letter, August, 2004, Drugs for Parasitic Infections, Nelson’s Pocket Book of Pediatric Antimicrobial Therapy, 15th Edition, Lippincott Williams, Wilkins, 2202-2003 AdverseAdverse ReactionsReactions DrugDrug FrequentFrequent OccasionalOccasional RareRare Ivermectin Fever, pruritus, tender hypotension lymphnodes, headache, joint and bone pain Albendazole Diarrhea, abdominal pain Leukopenia, alopecia, increased serum transaminase levels Thiabendazole Nausea, vomiting, Leudopenia, crystalluria, Shock, tinnitus, vertigo rash, hallucinations, intrahepatic olfactory disturbance, cholestasis, erythema multiforme, convulsions, Steven’s Johnson syndrome
Recommended publications
  • Animal Parasites and Human Diseases
    380 ANIMALS AND DISEASE ANIMAL PARASITES AND HUMAN DISEASES By Paul C. Beaver, Ph.D. Department of Tropical Medicine and Public Health, Tulane University School of Medicine P A1IASITES fall only roughly into the two directed to parasitic infections caused by categories implied in the title of this worms which, regardless of length of resi- discussion. While a few of them arc totally dence in the human body, do not reach full dependent upon htmman hosts, and some are reproductive maturity and are therefore not able to develop only in other animals, a diagnosable by the usual laboratory majority of the parasites commonly re- methods. It is of course the larval stages ferred to as “parasites of man” are in or immature adults that arc involve(! amid!, reality parasites of other animals.1 In the owing to their tendency to be mostly in the latter grouip are such familiar examples as tissues and in many instances difficult to Trichinella, found in rats and many other find and identify, the infections caused by animals, including pigs; Balantidium and them are often unrecognized. Largely for some lesser protozoa of pigs; Toxoplasma, this reason the frequency and severity of which occurs in many wild and domesti- infections of this nature have not been cated animals. Trypanosoma cnuzi, which is fully determined. There are, however, some carried by a variety of animals, is the cause familiar examples. of Chagas’ disease commonly seen in parts Certain well known larval tapeworm in- of South America and found recently in a fections are acquired from other animals.
    [Show full text]
  • Classification of Parasites BLY 459 First Lab Test (October 10, 2010)
    Classification of Parasites BLY 459 First Lab Test (October 10, 2010) If a taxonomic name is not in bold type, you will not be held responsible for it on the lab exam. Terms and common names that may be asked are also listed. I have attempted to be consistent with the taxonomic schemes in your text as well as to list all slides and live specimens that were displayed. In addition to highlighted taxa, be familiar with, material in lab handouts (especially proper nomenclature), lab display sheets, as well as material presented in lecture. Questions about vectors and locations within hosts will be asked. Be able to recognize healthy from infected tissue. Phylum Platyhelminthes (Flatworms) Class Turbellaria Dugesia (=Planaria ) Free-living, anatomy, X-section Bdelloura horseshoe crab gills Class Monogenea Gyrodactylus , Neobenedenis, Ergocotyle gills of freshwater fish Neopolystoma urinary bladder of turtles Class Trematoda ( Flukes ) Subclass Digenea Life-cycle stages: Recognize miracidia, sporocyst, redia, cercaria , metacercaria, adults & anatomy, model Order ?? Hirudinella ventricosa wahoo stomach Nasitrema nasal cavity of bottlenose dolphin Order Strigeiformes Family Schistosomatidae Schistosoma japonicum adults, male & female, liver granuloma & healthy liver, ova, cercariae, no metacercariae, adults in mesenteric intestinal veins Order Echinostomatiformes Family Fasciolidae Fasciola hepatica sheep & human liver, liver fluke Order Plagiorchiformes Family Dicrocoeliidae Dicrocoelium & Eurytrema Cure for All Diseases by Hulda Clark, Paragonimus
    [Show full text]
  • Worms, Nematoda
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, slg@unl.edu Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
    ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals.
    [Show full text]
  • Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
    UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA.
    [Show full text]
  • A Parasite of Red Grouse (Lagopus Lagopus Scoticus)
    THE ECOLOGY AND PATHOLOGY OF TRICHOSTRONGYLUS TENUIS (NEMATODA), A PARASITE OF RED GROUSE (LAGOPUS LAGOPUS SCOTICUS) A thesis submitted to the University of Leeds in fulfilment for the requirements for the degree of Doctor of Philosophy By HAROLD WATSON (B.Sc. University of Newcastle-upon-Tyne) Department of Pure and Applied Biology, The University of Leeds FEBRUARY 198* The red grouse, Lagopus lagopus scoticus I ABSTRACT Trichostrongylus tenuis is a nematode that lives in the caeca of wild red grouse. It causes disease in red grouse and can cause fluctuations in grouse pop ulations. The aim of the work described in this thesis was to study aspects of the ecology of the infective-stage larvae of T.tenuis, and also certain aspects of the pathology and immunology of red grouse and chickens infected with this nematode. The survival of the infective-stage larvae of T.tenuis was found to decrease as temperature increased, at temperatures between 0-30 C? and larvae were susceptible to freezing and desiccation. The lipid reserves of the infective-stage larvae declined as temperature increased and this decline was correlated to a decline in infectivity in the domestic chicken. The occurrence of infective-stage larvae on heather tips at caecal dropping sites was monitored on a moor; most larvae were found during the summer months but very few larvae were recovered in the winter. The number of larvae recovered from the heather showed a good correlation with the actual worm burdens recorded in young grouse when related to food intake. Examination of the heather leaflets by scanning electron microscopy showed that each leaflet consists of a leaf roll and the infective-stage larvae of T.tenuis migrate into the humid microenvironment' provided by these leaf rolls.
    [Show full text]
  • Some Immunological and Other Studies in Mice on Infection with Embryonated Eggs of Toxocara Canis (Werner, 1782)
    This dissertation has been 69-11,668 microfilmed exactly as received MALIK, Prem Dutt, 1918- SOME IMMUNOLOGICAL AND OTHER STUDIES IN MICE ON INFECTION WITH EMBRYONATED EGGS OF TOXOCARA CANIS (WERNER, 1782). The Ohio State University, Ph.D., 1968 Agriculture, animal pathology Health Sciences, immunology University Microfilms, Inc., Ann Arbor, Michigan SOME IMMUNOLOGICAL AND OTHER STUDIES IN MICE ON INFECTION WITH EMBRYONATED EGGS OF TOXOCARA CANIS (WERNER, 1782) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Prem Dutt Malik, L.V.P., B.V.Sc., M.Sc ****** The Ohio State University 1968 Approved by Adviser / Department of Veterinary Parasitology ACKNOWLEDGMENTS I wish to express my earnest thanks to my adviser, Dr. Fleetwood R. Koutz, Professor and Chairman, Department of Veterinary Parasitology, for planning a useful program of studies for me, and ably guiding my research project to a successful conclusion. His wide and varied experience in the field of Veterinary Parasitology came handy to me at all times during the conduct of this study. My grateful thanks are expressed to Dr. Harold F. Groves, for his sustained interest in the progress of this work, and careful scrutiny of the manuscript. Thanks are extended to Dr. Walter G. Venzke, for making improvements in the manuscript. Dr. Marion W. Scothorn deserves my thanks for his wholehearted cooperation. To Dr. Walter F. Loeb, I am really indebted for his valuable time in taking pictures of the eggs, the larvae, and the spermatozoa of Toxocara canis. The help of Mr.
    [Show full text]
  • (Apteryx Rowi) Due to Cutaneous Larval Migrans B.D
    International Journal for Parasitology: Parasites and Wildlife 4 (2015) 1–10 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Ventral dermatitis in rowi (Apteryx rowi) due to cutaneous larval migrans B.D. Gartrell a,*, L. Argilla b, S. Finlayson a,b, K. Gedye a, A.K. Gonzalez Argandona a,b, I. Graham c, L. Howe a, S. Hunter a, B. Lenting b, T. Makan d, K. McInnes d, S. Michael a,b, K.J. Morgan a, I. Scott a, D. Sijbranda a,b, N. van Zyl a, J.M. Ward a a Wildbase, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4410, New Zealand b Wellington Zoo, 200 Daniell Street, Newtown, Wellington 6021, New Zealand c Department of Conservation, Franz Josef Office, State Highway 6, Franz Josef Glacier, 7856, New Zealand d Science and Capability Group, Department of Conservation, National Office, 18-32 Manners Street, Wellington 6011, New Zealand ARTICLE INFO ABSTRACT Article history: The rowi is a critically endangered species of kiwi. Young birds on a crèche island showed loss of feath- Received 15 September 2014 ers from the ventral abdomen and a scurfy dermatitis of the abdominal skin and vent margin. Histology Revised 31 October 2014 of skin biopsies identified cutaneous larval migrans, which was shown by molecular sequencing to be Accepted 6 November 2014 possibly from a species of Trichostrongylus as a cause of ventral dermatitis and occasional ulcerative vent dermatitis. The predisposing factors that led to this disease are suspected to be the novel exposure of Keywords: the rowi to parasites from seabirds or marine mammals due to the island crèche and the limited man- Apterygiformes agement of roost boxes.
    [Show full text]
  • Foodborne Anisakiasis and Allergy
    Foodborne anisakiasis and allergy Author Baird, Fiona J, Gasser, Robin B, Jabbar, Abdul, Lopata, Andreas L Published 2014 Journal Title Molecular and Cellular Probes Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.mcp.2014.02.003 Copyright Statement © 2014 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/342860 Griffith Research Online https://research-repository.griffith.edu.au Foodborne anisakiasis and allergy Fiona J. Baird1, 2, 4, Robin B. Gasser2, Abdul Jabbar2 and Andreas L. Lopata1, 2, 4 * 1 School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia 4811 2 Centre of Biosecurity and Tropical Infectious Diseases, James Cook University, Townsville, Queensland, Australia 4811 3 Department of Veterinary Science, The University of Melbourne, Victoria, Australia 4 Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland, Australia 4811 * Correspondence. Tel. +61 7 4781 14563; Fax: +61 7 4781 6078 E-mail address: andreas.lopata@jcu.edu.au 1 ABSTRACT Parasitic infections are not often associated with first world countries due to developed infrastructure, high hygiene standards and education. Hence when a patient presents with atypical gastroenteritis, bacterial and viral infection is often the presumptive diagnosis. Anisakid nematodes are important accidental pathogens to humans and are acquired from the consumption of live worms in undercooked or raw fish. Anisakiasis, the disease caused by Anisakis spp.
    [Show full text]
  • Entomopathogenic Nematodes (Nematoda: Rhabditida: Families Steinernematidae and Heterorhabditidae) 1 Nastaran Tofangsazi, Steven P
    EENY-530 Entomopathogenic Nematodes (Nematoda: Rhabditida: families Steinernematidae and Heterorhabditidae) 1 Nastaran Tofangsazi, Steven P. Arthurs, and Robin M. Giblin-Davis2 Introduction Entomopathogenic nematodes are soft bodied, non- segmented roundworms that are obligate or sometimes facultative parasites of insects. Entomopathogenic nema- todes occur naturally in soil environments and locate their host in response to carbon dioxide, vibration, and other chemical cues (Kaya and Gaugler 1993). Species in two families (Heterorhabditidae and Steinernematidae) have been effectively used as biological insecticides in pest man- agement programs (Grewal et al. 2005). Entomopathogenic nematodes fit nicely into integrated pest management, or IPM, programs because they are considered nontoxic to Figure 1. Infective juvenile stages of Steinernema carpocapsae clearly humans, relatively specific to their target pest(s), and can showing protective sheath formed by retaining the second stage be applied with standard pesticide equipment (Shapiro-Ilan cuticle. et al. 2006). Entomopathogenic nematodes have been Credits: James Kerrigan, UF/IFAS exempted from the US Environmental Protection Agency Life Cycle (EPA) pesticide registration. There is no need for personal protective equipment and re-entry restrictions. Insect The infective juvenile stage (IJ) is the only free living resistance problems are unlikely. stage of entomopathogenic nematodes. The juvenile stage penetrates the host insect via the spiracles, mouth, anus, or in some species through intersegmental membranes of the cuticle, and then enters into the hemocoel (Bedding and Molyneux 1982). Both Heterorhabditis and Steinernema are mutualistically associated with bacteria of the genera Photorhabdus and Xenorhabdus, respectively (Ferreira and 1. This document is EENY-530, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.
    [Show full text]
  • Trichostrongylus Cramae N. Sp. (Nematoda), a Parasite of Bob-White Quail (Colinus Virginianus) M.-C
    Ann. Parasitol. Hum. Comp., Key-words: Trichostrongylus. Birds. Europe. USA. Trichos- 1993, 68 : n° 1, 43-48. trongylus tenuis. T. cramae n. sp. Lagopus scoticus. Pavo cris- tatus. Perdix perdix. Phasianus colchicus. Colinus virginianus. Mémoire. Mots-clés : Trichostrongylus. Oiseaux. Europe. USA. Trichos­ trongylus tenuis. T. cramae n. sp. Lagopus scoticus. Pavo cris- tatus. Perdix perdix. Phasianus colchicus. Colinus virginianus. TRICHOSTRONGYLUS CRAMAE N. SP. (NEMATODA), A PARASITE OF BOB-WHITE QUAIL (COLINUS VIRGINIANUS) M.-C. DURETTE-DESSET*, A. G. CHABAUD*, J. MOORE** Summary ---------------------------------------------------------- Cram (1925, 1927) incorrectly identified as T. pergracilis (now the cuticular striation, the relative distances between the second, a synonym of T. tenuis) what was in reality an undescribed spe­ third and fourth bursal papillae and the configuration of the dorsal cies in Colinus virginianus. ray. Red grouse (Lagopus scoticus), the type host of T. pergra­ Trichostrongylus cramae n. sp. is proposed for T. pergracilis cilis, was in fact found to be parasitized by T. tenuis, confirming sensu Cram, 1927 nec Cobbold, 1873 from C. virginianus from the synonymy of T. pergracilis and T. tenuis. USA. It differs from T. tenuis (Mehlis in Creplin, 1846) as regards Résumé : Trichostrongylus cramae n. sp. (Nematoda) parasite de Colinus virginianus. Cram (1925, 1927) a identifié par erreur comme étant T. per­ Il se différencie de T. tenuis (Mehlis in Creplin, 1846) par la gracilis, maintenant considéré comme un synonyme de T. tenuis, striation cuticulaire, les distances relatives entre les papilles bur- ce qui était en réalité une espèce non décrite parasite de Colinus sales 2, 3 et 4, et par la configuration de la côte dorsale.
    [Show full text]
  • P-Glycoprotein Drug Transporters in the Parasitic Nematodes Toxocara Canis and Parascaris
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris Jeba Rose Jennifer Jesudoss Chelladurai Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Parasitology Commons, and the Veterinary Medicine Commons Recommended Citation Jesudoss Chelladurai, Jeba Rose Jennifer, "P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris" (2019). Graduate Theses and Dissertations. 17707. https://lib.dr.iastate.edu/etd/17707 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu. P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris by Jeba Rose Jennifer Jesudoss Chelladurai A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Pathology (Veterinary Parasitology) Program of Study Committee: Matthew T. Brewer, Major Professor Douglas E. Jones Richard J. Martin Jodi D. Smith Tomislav Jelesijevic The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Jeba Rose Jennifer Jesudoss Chelladurai, 2019.
    [Show full text]