Foodborne Anisakiasis and Allergy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ascaridida: Anisakidae), Parasites of Squids in Ne Atlantic
Research and Reviews in Parasitology. 55 (4): 239-241 (1995) Published by A.P.E. © 1995 Asociaci6n de Parasit61ogos Espaiioles (A.P.E.) Printed in Barcelona. Spain ELECTROPHORETIC IDENTIFICATION OF L3 LARVAE OF ANISAKIS SIMPLEX (ASCARIDIDA: ANISAKIDAE), PARASITES OF SQUIDS IN NE ATLANTIC S. PASCUALI, C. ARIASI & A. GUERRA2 ILaboratorio de Parasitologia, Facti/lad de Ciencias del Mar, Universidad de Vigo, Ap. 874, 36200 Vigo, Spain 2/nsliltllO de lnvestigaciones Marinas, Cl Eduardo Cabello 6,36208, Vigo, Spain Received 30 October 1995; accepted 27 November 1996 REFERENCE:PASCUAL(S.), ARIAS(C) & GUERRA(A.), 1995.- Electrophoretic identification of L3 larvae of Anisakis simplex (Ascaridida:Anisaki- dae), parasites of squids in NE Atlantic. Research and Reviews in Parasitology, 55 (4): 239-241. ABSTRACT:The genetic identification of the larvae of a species of Anisakis collected from North-East Atlantic squids was investigatedby electrop- horetic analysis of 17enzyme loci. The correspondence of type I larvae with the sibling species A. simplex B is confirmed. Both I//ex coindetii and Todaropsis eblanae squids represent new host records for sibling B. KEYWORDS:Multilocus enzyme electrophoresis, Anisakis simplex B, squids, NE Atlantic. INTRODUCTION Electrophoretic analyses: For the electrophoretic tests, homoge- nates were obtained from single individuals crushed in distilled water. These were absorbed in 5 by 5 mm chromatography paper Electrophoretic analysis of genetically determined (Whatman 3MM) and inserted in 10% starch gel trays. Standard allozyme polymorphisms has become a useful taxono- horizontal electrophoresis was carried out at 7-9 V cm' for 3-6 h at mic tool for explaining genetic variations between the 5° C. -
Document Anisakis Annual Report 20-21 Download
Cefas contract report C7416 FSA Reference: FS616025 Summary technical report for the UK National Reference Laboratory for Anisakis – April 2020 to March 2021 July 2021 Summary Technical Report for the UK National Reference Laboratory for Anisakis – April 2020 to March 2021 Final 20 pages Not to be quoted without prior reference to the author Author: Cefas Laboratory, Barrack Road, Weymouth, Dorset, DT4 8UB Cefas Document Control Submitted to: FSA Valerie Mcfarlane Date submitted: 05/05/2021 Project reference: C7416 Project Manager: Sharron Ganther Report compiled by: Alastair Cook Quality controlled by: Michelle Price-Hayward 29/04/2021 Approved by and date: Sharron Ganther 04/05/2021 Version: Final Classification: Not restricted Review date: N/A Recommended citation for NRL technical report. (2021). Cefas NRL Project this report: Report for FSA (C7416), 20 pp. Version Control History Author Date Comment Version Alastair Cook 26/04/2021 First draft V1 Draft V1 for internal review Michelle Price- 30/04/2021 Technical Draft V2 Hayward Review V2 Alastair Cook 30/04/2021 V3 for approval V3 for internal approval Sharron Ganther 04/05/2021 Final V1 Draft for FSA review Valerie Mcfarlane 07/07/2021 Final Contents 1. Introduction .............................................................................................................................................. 3 2. Ongoing maintenance of general capacity ........................................................................................... 4 3. Completion of 2021 EURL proficiency -
Animal Parasites and Human Diseases
380 ANIMALS AND DISEASE ANIMAL PARASITES AND HUMAN DISEASES By Paul C. Beaver, Ph.D. Department of Tropical Medicine and Public Health, Tulane University School of Medicine P A1IASITES fall only roughly into the two directed to parasitic infections caused by categories implied in the title of this worms which, regardless of length of resi- discussion. While a few of them arc totally dence in the human body, do not reach full dependent upon htmman hosts, and some are reproductive maturity and are therefore not able to develop only in other animals, a diagnosable by the usual laboratory majority of the parasites commonly re- methods. It is of course the larval stages ferred to as “parasites of man” are in or immature adults that arc involve(! amid!, reality parasites of other animals.1 In the owing to their tendency to be mostly in the latter grouip are such familiar examples as tissues and in many instances difficult to Trichinella, found in rats and many other find and identify, the infections caused by animals, including pigs; Balantidium and them are often unrecognized. Largely for some lesser protozoa of pigs; Toxoplasma, this reason the frequency and severity of which occurs in many wild and domesti- infections of this nature have not been cated animals. Trypanosoma cnuzi, which is fully determined. There are, however, some carried by a variety of animals, is the cause familiar examples. of Chagas’ disease commonly seen in parts Certain well known larval tapeworm in- of South America and found recently in a fections are acquired from other animals. -
Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals. -
Dr. Donald L. Price Center for Parasite Repository and Education College of Public Health, University of South Florida
Dr. Donald L. Price Center For Parasite Repository and Education College of Public Health, University of South Florida PRESENTS Sources of Infective Stages and Modes of Transmission of Endoparasites Epidemiology is the branch of science that deals with the distribution and spread of disease. How diseases are transmitted, i.e. how they are passed from an infected individual to a susceptible one is a major consideration. Classifying and developing terminology for what takes place has been approached in a variety of ways usually related to specific disease entities such as viruses, bacteria, etc. The definitions that follow apply to those disease entities usually classified as endoparasites i.e. those parasites that reside in a body passage or tissue of the definitive host or in some cases the intermediate host. When the definition of terms for the “Source of Infection” or “Mode of Infection” relate to prevention and/or control of an endoparasitic disease, they should be clearly described. For the source of infection, the medium (water, soil, utensils, etc.) or the host organism (vector, or intermediate host) on which or in which the infective stage can be found should be precisely identified. For the mode of transmission, the precise circumstances and means by which the infective stage is able to come in contact with, enter, and initiate an infection in the host should be described. SOURCE OF INFECTION There are three quite distinct and importantly different kinds of sources of the infective stage of parasites: Contaminated Sources, Infested Sources, and Infected Sources. CONTAMINATE SOURCES Contaminated Source, in parasitology, implies something that has come in contact with raw feces and is thereby polluted with feces or organisms that were present in it. -
A Parasite of Red Grouse (Lagopus Lagopus Scoticus)
THE ECOLOGY AND PATHOLOGY OF TRICHOSTRONGYLUS TENUIS (NEMATODA), A PARASITE OF RED GROUSE (LAGOPUS LAGOPUS SCOTICUS) A thesis submitted to the University of Leeds in fulfilment for the requirements for the degree of Doctor of Philosophy By HAROLD WATSON (B.Sc. University of Newcastle-upon-Tyne) Department of Pure and Applied Biology, The University of Leeds FEBRUARY 198* The red grouse, Lagopus lagopus scoticus I ABSTRACT Trichostrongylus tenuis is a nematode that lives in the caeca of wild red grouse. It causes disease in red grouse and can cause fluctuations in grouse pop ulations. The aim of the work described in this thesis was to study aspects of the ecology of the infective-stage larvae of T.tenuis, and also certain aspects of the pathology and immunology of red grouse and chickens infected with this nematode. The survival of the infective-stage larvae of T.tenuis was found to decrease as temperature increased, at temperatures between 0-30 C? and larvae were susceptible to freezing and desiccation. The lipid reserves of the infective-stage larvae declined as temperature increased and this decline was correlated to a decline in infectivity in the domestic chicken. The occurrence of infective-stage larvae on heather tips at caecal dropping sites was monitored on a moor; most larvae were found during the summer months but very few larvae were recovered in the winter. The number of larvae recovered from the heather showed a good correlation with the actual worm burdens recorded in young grouse when related to food intake. Examination of the heather leaflets by scanning electron microscopy showed that each leaflet consists of a leaf roll and the infective-stage larvae of T.tenuis migrate into the humid microenvironment' provided by these leaf rolls. -
Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being
Research and Reviews on Healthcare: Open Access Journal DOI: 10.32474/RRHOAJ.2020.06.000226 ISSN: 2637-6679 Research Article Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being Firew Admasu Hailu1*, Geremew Tafesse1 and Tsion Admasu Hailu2 1Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia 2Addis Ababa Medical and Business College, Addis Ababa, Ethiopia *Corresponding author: Firew Admasu Hailu, Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia Received: November 05, 2020 Published: November 20, 2020 Abstract Introduction: This study mainly focus on the major pathologic manifestations of human gastrointestinal impacts of parasitic worms. Background: Helminthes and protozoan are human parasites that can infect gastrointestinal tract of humans beings and reside in intestinal wall. Protozoans are one celled microscopic, able to multiply in humans, contributes to their survival, permits serious infections, use one of the four main modes of transmission (direct, fecal-oral, vector-borne, and predator-prey) and also helminthes are necked multicellular organisms, referred as intestinal worms even though not all helminthes reside in intestines. However, in their adult form, helminthes cannot multiply in humans and able to survive in mammalian host for many years due to their ability to manipulate immune response. Objectives: The objectives of this study is to assess the main pathophysiology and gastrointestinal impacts of parasitic worms in human being. Methods: Both primary and secondary data were collected using direct observation, books and articles, and also analyzed quantitativelyResults and and conclusion: qualitatively Parasites following are standard organisms scientific living temporarily methods. in or on other organisms called host like human and other animals. -
Helminthology Nematodes Strongyloides.Pdf
HelminthologyHelminthology –– NematodesNematodes StrongyloidesStrongyloides TerryTerry LL DwelleDwelle MDMD MPHTMMPHTM ClassificationClassification ofof NematodesNematodes Subclass Order Superfamily Genus and Species Probable (suborder) prevalence in man Secernentea Rhabditida Rhabditoidea Strongyloides stercoralis 56 million Stronglyloides myoptami Occasional Strongyloides fuelloborni Millions Strongyloides pyocyanis Occasional GeneralGeneral InformationInformation ► PrimarilyPrimarily aa diseasedisease ofof tropicaltropical andand subtropicalsubtropical areas,areas, highlyhighly prevalentprevalent inin Brazil,Brazil, Columbia,Columbia, andand SESE AsiaAsia ► ItIt isis notnot uncommonuncommon inin institutionalinstitutional settingssettings inin temperatetemperate climatesclimates ((egeg mentalmental hospitals,hospitals, prisons,prisons, childrenchildren’’ss homes)homes) ► SeriousSerious problemproblem inin thosethose onon immunosuppressiveimmunosuppressive therapytherapy ► HigherHigher prevalenceprevalence inin areasareas withwith aa highhigh waterwater tabletable GeneralGeneral RecognitionRecognition FeaturesFeatures ► Size;Size; parasiticparasitic femalefemale 2.72.7 mm,mm, freefree livingliving femalefemale 1.21.2 mm,mm, freefree livingliving malemale 0.90.9 mmmm ► EggsEggs –– 5050--5858 XX 3030--3434 umum ► TheThe RhabdiformRhabdiform larvaelarvae havehave aa shortershorter buccalbuccal canalcanal vsvs hookwormhookworm ► LarvaeLarvae havehave aa doubledouble laterallateral alaealae,, smallersmaller thanthan hookwormhookworm ► S.S. -
(Apteryx Rowi) Due to Cutaneous Larval Migrans B.D
International Journal for Parasitology: Parasites and Wildlife 4 (2015) 1–10 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Ventral dermatitis in rowi (Apteryx rowi) due to cutaneous larval migrans B.D. Gartrell a,*, L. Argilla b, S. Finlayson a,b, K. Gedye a, A.K. Gonzalez Argandona a,b, I. Graham c, L. Howe a, S. Hunter a, B. Lenting b, T. Makan d, K. McInnes d, S. Michael a,b, K.J. Morgan a, I. Scott a, D. Sijbranda a,b, N. van Zyl a, J.M. Ward a a Wildbase, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4410, New Zealand b Wellington Zoo, 200 Daniell Street, Newtown, Wellington 6021, New Zealand c Department of Conservation, Franz Josef Office, State Highway 6, Franz Josef Glacier, 7856, New Zealand d Science and Capability Group, Department of Conservation, National Office, 18-32 Manners Street, Wellington 6011, New Zealand ARTICLE INFO ABSTRACT Article history: The rowi is a critically endangered species of kiwi. Young birds on a crèche island showed loss of feath- Received 15 September 2014 ers from the ventral abdomen and a scurfy dermatitis of the abdominal skin and vent margin. Histology Revised 31 October 2014 of skin biopsies identified cutaneous larval migrans, which was shown by molecular sequencing to be Accepted 6 November 2014 possibly from a species of Trichostrongylus as a cause of ventral dermatitis and occasional ulcerative vent dermatitis. The predisposing factors that led to this disease are suspected to be the novel exposure of Keywords: the rowi to parasites from seabirds or marine mammals due to the island crèche and the limited man- Apterygiformes agement of roost boxes. -
The Ceylon Medical 2006 Jan..Pmd
Leading articles with funding contributions from the professional colleges, International Council of Medical Journal Editors. New Ministry of Health, and the WHO (which has already taken England Journal of Medicine 2004; 351: 1250–1 (Editorial). some promotive and facilitatory initial actions in this regard 2. Angelis CD, Drazen JM, Frizelle FA, Haug C, Hoey J, et [4,8]. Our Journal already has a policy decision in place al. Is this clinical trial fully registered?—A statement from not to consider for publication papers reporting clinical the International Council of Medical Journal Editors. New trials that have not received approval from an acceptable England Journal of Medicine 2005; 352: 2436–8. ethical review committee, before the trial started enrolling (Editorial). participants. When a suitable trials registry has been 3. Abbasi K. Compulsory registration of clinical trials. British established, we will fall in line with the recent recommendation Medical Journal 2004; 329: 637–8 (Editorial). of the ICMJE [1–4]. 4. Abbasi K, Godlee F. Next steps in trial registration. British Meanwhile, we urge all medical professional bodies Medical Journal. 2005; 330: 1222–3 (Editorial). and all editors of journals publishing biomedical research in Sri Lanka to support this ICMJE concept, and the Sri 5. Macklin R. Double Standards in Medical Research. Lanka Medical Association to take all necessary steps, as Cambridge: Cambridge University Press, 2004. a matter of priority, to establish a registry of clinical trials. 6. Simes RJ. Publication bias: the case for an international To demur or delay now would place in peril the status of registry of clinical trials. -
Systems Metabolic Effects of a <Italic>Necator Americanus</Italic> Infection in Syrian Hamster
Systems Metabolic Effects of a Necator americanus Infection in Syrian Hamster Yulan Wang,†,* Shu-Hua Xiao,‡ Jian Xue,‡ Burton H. Singer,§ Ju¨rg Utzinger,# and Elaine Holmes| State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, People’s Republic of China, Office of Population Research, Princeton University, 245 Wallace Hall, Princeton, New Jersey 08544, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom Received May 4, 2009 Hookworms (Ancylostoma duodenale and Necator americanus) are blood-feeding intestinal nematodes that infect ∼700 million people worldwide. To further our understanding of the systems metabolic response of the mammalian host to hookworm infection, we employed a metabolic profiling strategy involving the combination of 1H NMR spectroscopic analysis of urine and serum and multivariate data analysis techniques to investigate the biochemical consequences of a N. americanus infection in the hamster. The infection was characterized by altered energy metabolism, consistent with hookworm- induced anemia. Additionally, disturbance of gut microbiotal activity was associated with a N. americanus infection, manifested in the alterations of microbial-mammalian cometabolites, including phenylacetylglycine, p-cresol glucuronide, 4-hydroxy-3-methyl-phenylpropionic acid, hippurate, 4-hydroxyphenylactate, and dimethylamine. The correlation between worm burden and metabolite concentrations also reflected a changed energy metabolism and gut microbial state.