The Question of Pure Fusion Explosions Under the CTBT
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
NUCLEAR WEAPONS EFFECTS Introduction: the Energy Characteristics and Output from Nuclear Weapons Differ Significantly from Conve
NUCLEAR WEAPONS EFFECTS Introduction: The energy characteristics and output from nuclear weapons differ significantly from conventional weapons. Nuclear detonations exhibit much higher temperature within the fireball and produce peak temperatures of several hundred million degrees and intense x-ray heating that results in air pressure pulses of several million atmospheres. Conventional chemical explosions result in much lower temperatures and release the bulk of their energy as air blast and shock waves. In an atmospheric detonation, such as was deployed in Japan, it is the blast and thermal component of the nuclear explosion that is the major factor in destruction and death, not nuclear radiation, as the public believes. The effective range of immediate harm to humans from nuclear radiation from the atmospheric explosion is much less than the effective range from blast and thermal heating. In order to limit the discussion of weapons effects to elementary terms, this discussion is based upon a single worst-case scenario. Probably the largest weapon that might be employed against a population would have a yield of less than one-megaton (or 1 million tons of TNT equivalent energy or simply 1 MT). However, a crude terrorist nuclear device would probably be in the range of a few thousand tons of TNT equivalent energy or a few KT). The discussion here is based upon a nuclear detonation of 1 MT. Yield: The destructive power of a nuclear weapon, when compared to the same amount of energy produced by TNT is defined as the ‘yield’ of the nuclear weapon. A 20-kiloton (KT) weapon, such as was detonated over Japan in World War II was equivalent in energy yield to 20,000 tons of TNT. -
Footnotes for ATOMIC ADVENTURES
Footnotes for ATOMIC ADVENTURES Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey into the Wild World of Nuclear Science By James Mahaffey While writing ATOMIC ADVENTURES, I tried to be careful not to venture off into subplots, however interesting they seemed to me, and keep the story flowing and progressing at the right tempo. Some subjects were too fascinating to leave alone, and there were bits of further information that I just could not abandon. The result is many footnotes at the bottom of pages, available to the reader to absorb at his or her discretion. To get the full load of information from this book, one needs to read the footnotes. Some may seem trivia, but some are clarifying and instructive. This scheme works adequately for a printed book, but not so well with an otherwise expertly read audio version. Some footnotes are short enough to be inserted into the audio stream, but some are a rambling half page of dense information. I was very pleased when Blackstone Audio agreed wholeheartedly that we needed to include all of my footnotes in this version of ATOMIC ADVENTURES, and we came up with this added feature: All 231 footnotes in this included text, plus all the photos and explanatory diagrams that were included in the text. I hope you enjoy reading some footnotes while listening to Keith Sellon-Wright tell the stories in ATOMIC ADVENTURES. James Mahaffey April 2017 2 Author’s Note Stories Told at Night around the Glow of the Reactor Always striving to beat the Atlanta Theater over on Edgewood Avenue, the Forsyth Theater was pleased to snag a one-week engagement of the world famous Harry Houdini, extraordinary magician and escape artist, starting April 19, 1915.1 It was issued an operating license, no. -
1958 Geneva Conference on the Discontinuation of Nuclear Weapons
1 2 3 4 5 6 7 8 Presidential Decisions on Stockpile Stewardship Test-Based Stewardship and the Cold War Transitioning to Stockpile Stewardship Science: Research, Development, and Technology Deterrence and the Life Extension Program Global Nuclear Security Timeline of U.S. Stockpile Stewardship Innovation The Path Forward Today, I am announcing my “decision to negotiate a true zero-yield comprehensive test ban.” U.S. President Bill Clinton, August 11, 1995 The National Defense Authorization Act for fiscal year 1994 (P.L. 103-160) estab- lished the Stockpile Stewardship Program (SSP) to sustain the nuclear deterrent in the absence of nuclear explosive testing. The SSP supports U.S. national security missions through leading-edge scientific, engineering, and technical tools and expertise – a U.S. response to the end of the Cold War and the need to remake the global nuclear landscape. One year later, on August 11, 1995, Presi- dent Bill Clinton announced that the United States would support a “zero yield” Compre- hensive Nuclear-Test-Ban Treaty (CTBT): “I am assured by the Secretary of Energy and the Directors of our nu- clear weapons labs that we can meet the challenge of maintaining our nuclear deterrent under a Compre- hensive Test-Ban Treaty through a Science-Based Stockpile Stewardship program without nuclear testing.” This year, the Nation and the Department of Energy (DOE) celebrate the 20th anniver- sary of that announcement and the scientific and technical capabilities that have devel- oped to support this policy direction. The national investment in stockpile stewardship has enabled resolution of many stockpile issues and provided more detailed knowledge than what could have been attained through nuclear explosive testing. -
Memorandum to Participants JASON 1994 Summer Study
Hydronnclear Testing and the Comprehensive Test Ban: Memorandum to Participants JASON 1994 Summer Study Natural Resources Defense Council, Inc. 1350 New York Avenue, NW, Suite 300 Washington, D.C. 20005 Tel (main): (202) 783-7800 Cochran (direct dial): (202) 624-9329 Paine (direct dial): (202) 624-9350 Fax: (202) 783-5917 INTERNET: [email protected] Although no commonly accepted defInition exists, a "hydronuclear test" may be generally described as a nuclear weapons test, or high-explosive driven criticality experiment, characterized by a nuclear energy release that is insuffIcient to heat the core material to the plasma temperatures that would cause it to explode "like a bomb." In such a test, the TNT equivalent energy release from fission would therefore not exceed the amount released by the chemical high explosive used to compress the fIssile material, and could be considerably ,less. Nuclear-weapon states, and possibly other states, also perform high-explosive driven implosion experiments using fusjon material, although" these' are not nonnally characterized as "hydronuclear tests". Hydronuclear tests can serve a useful role in the development of the full spectrum of unboosted fIssion weapons, including'first generation nuclear weapons of the implosion type with yields in the 5 to 30 kiloton range, more sophisticated designs with yields up to about a megaton, and advanced micro-nuclear weapons with yields of 5 to 500 tons. For pure fIssion weapons hydronuclear tests can be used to:' * optimize the timing of initiation of the -
1. Energy and Power1
1. Energy and Power1 © John Dawson At the end of the Cretaceous period, the golden age of dinosaurs, an asteroid or comet about 10 miles in diameter headed directly towards the Earth with a velocity of about 20 miles per second, over ten times faster than our speediest bullets. Many such large objects may have come close to the Earth, but this was the one that finally hit. It hardly noticed the air as it plunged through the atmosphere in a fraction of a second, momentarily leaving a trail of vacuum behind it. It hit the Earth with such force that it and the rock near it were suddenly heated to a temperature of over a million degrees Centigrade, several hundred times hotter than the surface of the sun. Asteroid, rock, and water (if it hit in the ocean) were instantly vaporized. The energy released in the explosion was greater than that of a hundred million megatons of TNT, 100 teratons, more than ten thousand times greater than the total U.S. and Soviet nuclear arsenals. Before a minute had passed, the expanding crater was 60 miles across and 20 miles deep. It would soon grow even larger. Hot vaporized material from the impact had already blasted its way out through most of the atmosphere to an altitude of 15 miles. Material that a moment earlier had been glowing plasma was beginning to cool and condense into dust and rock that would be spread worldwide. Few people are surprised by the fact that an asteroid, the size of Mt. Everest, could do a lot of damage when it hits the Earth. -
108–650 Senate Hearings Before the Committee on Appropriations
S. HRG. 108–650 Senate Hearings Before the Committee on Appropriations Energy and Water Development Appropriations Fiscal Year 2005 108th CONGRESS, SECOND SESSION H.R. 4614 DEPARTMENT OF DEFENSE—CIVIL DEPARTMENT OF ENERGY DEPARTMENT OF THE INTERIOR NONDEPARTMENTAL WITNESSES Energy and Water Development Appropriations, 2005 (H.R. 4614) S. HRG. 108–650 ENERGY AND WATER DEVELOPMENT APPROPRIATIONS FOR FISCAL YEAR 2005 HEARINGS BEFORE A SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE ONE HUNDRED EIGHTH CONGRESS SECOND SESSION ON H.R. 4614 AN ACT MAKING APPROPRIATIONS FOR ENERGY AND WATER DEVELOP- MENT FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 2005, AND FOR OTHER PURPOSES Department of Defense—Civil Department of Energy Department of the Interior Nondepartmental witnesses Printed for the use of the Committee on Appropriations ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 92–143 PDF WASHINGTON : 2005 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 COMMITTEE ON APPROPRIATIONS TED STEVENS, Alaska, Chairman THAD COCHRAN, Mississippi ROBERT C. BYRD, West Virginia ARLEN SPECTER, Pennsylvania DANIEL K. INOUYE, Hawaii PETE V. DOMENICI, New Mexico ERNEST F. HOLLINGS, South Carolina CHRISTOPHER S. BOND, Missouri PATRICK J. LEAHY, Vermont MITCH MCCONNELL, Kentucky TOM HARKIN, Iowa CONRAD BURNS, Montana BARBARA A. MIKULSKI, Maryland RICHARD C. SHELBY, Alabama HARRY REID, Nevada JUDD GREGG, New Hampshire HERB KOHL, Wisconsin ROBERT F. BENNETT, Utah PATTY MURRAY, Washington BEN NIGHTHORSE CAMPBELL, Colorado BYRON L. -
Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats
Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats FY 2018–FY 2022 Report to Congress November 2017 National Nuclear Security Administration United States Department of Energy Washington, DC 20585 Department of Energy/National Nuclear Security Administration | November 2017 Message from the Administrator The Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2018 report, Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats, outlines DOE/NNSA’s plans and programs to prevent the proliferation of nuclear weapons, counter the threat of nuclear terrorism, and respond to nuclear and radiological incidents around the world. The report is a companion to the Fiscal Year 2018 Stockpile Stewardship and Management Plan, which describes DOE/NNSA’s activities to ensure the reliability of the U.S. nuclear stockpile and maintain its foundational capabilities and infrastructure. In keeping with our commitment to transparency, updated versions of these reports are published each year. Maintaining the U.S. nuclear stockpile and reducing global nuclear threats—two missions that are often thought to involve different technical expertise and pursue disparate goals—are far more interconnected than they may appear. Many activities within these two DOE/NNSA mission pillars are mutually reinforcing and supportive of common objectives. The facilities and scientific knowledge that underpin stockpile stewardship, for example, are harnessed for a range of nonproliferation and counterterrorism missions, from assessing foreign weapons programs and potential terrorist devices to managing the proliferation risks posed by civil nuclear applications. Preventing the spread of nuclear weapons around the world yields considerable benefits for the U.S. -
Stockpile Stewardshipquarterly
DOE/NA-0066 Office of Research, Development, Test, and Evaluation Stockpile Stewardship Quarterly VOLUME 7 | NUMBER 4 | DECEMBER 2017 essage from the Assistant Deputy Administrator for Research, M Development, Test, and Evaluation, Dr. Kathleen Alexander In stockpile stewardship, one of the most Laboratory (LANL) takes a different focus, widely studied phenomena is the equation looking at the EOS and shock-driven of state (EOS). An EOS is a mathematical decomposition of ‘soft’ materials. LANL relationship that describes the state of uses a two-stage gas gun to collect shock matter (i.e., gas, liquid, or solid) using data of polymers to incorporate in their the material properties of temperature, EOS. volume, pressure, and internal energy. The The Joint Actinide Shock Physics EOS characterizes the properties of a state Experimental Research facility two-stage of matter under a given set of physical gas gun at Nevada National Security Site conditions. It is of interest for the metals (NNSS) is used for both hazardous and and non-metals of stockpile stewardship non-hazardous material studies for input application and is critical to understanding to EOS tables. Many EOS experiments Hong Sio, NNSA-supported senior Physics material behavior. Each of our weapon Department PhD student at the Massachusetts at NNSS involve dynamic materials and laboratories has extensive EOS activities. Institute of Technology (second from left) associated diagnostic developments found time to strike a pose with (left to This issue of the Stockpile Stewardship pertaining to stockpile materials. right) Dr. Njema Frazier and Dr. Bryan Sims Quarterly (SSQ) highlights representative (Research, Development, Test, and Evaluation) EOS activities at our national laboratories, Some of our innovative EOS work origi- and Mark Visosky (TechSource, Inc.) at the the Nevada National Security Site, and nated from the LDRD program projects at 59th Annual Meeting of the American Physical in the Laboratory Directed Research and Sandia. -
Hydronuclear Testing Or a Comprehensive Test Ban?
Hydronuclear Testing or a Comprehensive Test Ban? Natural Resources Defense Council, Inc. 1350 New York Avenue, NW, Suite 300 Washington, D.C. 20005 Tele: (202) 783-7800 Fax: (202) 783-5917 Hydronuclear tests--tests of nuclear weapons at yields less than about two kilograms of TNT equivalent--are useful for the assessment of new designs and the safety of existing designs. Hydronuclear tests can serve a useful role in the development of the full spectrum of unboosted fission weapons, including first generation nuclear weapons of the implosion type with yields in the 10 to 30 kiloton range, more sophisticated designs with yields up to about a megaton, and advanced micro-nuclear weapons with yields of 5 to 500 tons. Since hydronuclear tests do not generate sufficient yield to create the conditions for fusion of deuterium and tritium in the core, such tests do not provide a reliable means if extrapolating the performance of new "boosted" fission weapons and thermonuclear primaries, or advanced thermonuclear secondaries. In negotiating the Comprehensive Test Ban Treaty (CTBT) the current strategy of the U.S. Government is not to define in the treaty what constitutes a nuclear test. If this strategy is successful and the treaty is ratified, the U.S. Government will interpret the CTBT to permit hydronuclear testing if such a test is conducted by any other country. A program of hydronuclear testing by any of the weapon states will encourage the others to conduct similar tests, with the results of undermining the purpose of the treaty. If hydronuclear tests are permitted under a CTB, the nuclear test sites of declared nuclear powers may be maintained, in part, to facilitate the conduct of hydronuclear tests. -
THE EFFECTS of NUCLEAR WEAPONS John A
THE EFFECTS OF NUCLEAR WEAPONS John A. Auxier, PhD. CHP Auxier & Associates, Inc. Knoxville, TN 37932 The vast majority of what is known about the effects of nuclear weapons in an occupied urban environment was learned at Hiroshima and Nagasaki. This information has been supplemented by that gathered at numerous nuclear weapons tests. For the purposes at hand, the effects of “nominal” weapons of 20 kilotons of TNT equivalent (KT), or less, will be given, while large “sophisticated” and thermonuclear weapons will be included only briefly. However, many people will want to supplement the materials provided today with a study of Sam Glasstone’s Effects of Nuclear Weapons. The 1962 edition has more materials on the effects of small weapons than most others. For consideration by terrorists we assume that they do not have access to large, high yield devices but may get the materials to assemble a “home made” bomb. However, for any nuclear device, the following materials should be helpful. Table 1 shows the distribution of fission energy for uranium-235, but for our purposes here we can assume that the numbers apply generally to other uranium isotopes and plutonium. Of course, after a very long time, all the fission energy appears as heat. Table 1. Distribution of Fission Energy in units of MeV Kinetic energy of fission fragments 165±5 Instantaneous gamma-ray energy 7±1 Kinetic energy of fission neutrons 5±0.5 Beta particles from fission products 7±1 Gamma rays from fission products 6±1 Neutrinos from fission products 10 Total energy per fission 200±6 Table 2 shows the comparison of fission energy, per mass, with the energy of TNT. -
The Effects Nuclear Weapons
The Effects of Nuclear Weapons Compiled and edited by Samuel Glasstone and Philip J. Dolan Third Edition Prepared and published by the UNITED STATES DEPARTMENT OF DEFENSE and the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION .~~ -'!l -:8 ~ ~ ~" ,,-" .,,~ ..0 1977 ,-..,." . J!'or sale by the Superintendent of Documents, U.S. Government Printing OlBce Washln~ton. D.C. 20402 '" ; I ib',c I PREFACE When "The Effects of Atomic Weapons" was published in 1950, the explosive energy yields of the fission bombs available at that time were equivalent to some thousands of tons (i.e., kilotons) of TNT. With the development of thermonuclear (fusion) weapons, having energy yields in the range of millions of tons (i.e., megatons) of TNT, a new presentation, entitled "The Effects of Nuclear Weap- ons," was issued in 1957. A completely revised edition was published in 1962 and this was reprinted with a few changes early in 1964. Since the last version of "The Effects of Nuclear Weapons" was prepared, much new information has become available concerning nuclear weapons effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. Within the limits imposed by security re- quirements, the new information has been incorporated in the present edition. In particular, attention may be called to a new chapter on the electromagnetic pulse. We should emphasize, as has been done in the earlier editions, that numerical values given in this book are not-and cannot be-exact. -
Progress in Demonstrating Magneto-Inertial Fusion Science and Scaling Dr
Progress in demonstrating magneto-inertial fusion science and scaling Dr. Daniel Sinars for the MagLIF team Sandia National Laboratories ARPA-E Annual Meeting August 29-31, 2017 Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. Magnetized Liner Inertial Fusion (MagLIF) relies on three stages to produce fusion relevant conditions Laser Applied Applied Amplified B-field B-field B-field Current Current- generated B-field Compress the heated Apply axial magnetic field Laser-heat the magnetized fuel and magnetized fuel 2 S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010). Magnetized Liner Inertial Fusion (MagLIF) relies on three stages to produce fusion relevant conditions Laser Applied Applied Amplified B-field B-field B-field Current Current- generated B-field Can replace magnetic Compress the heated Apply axial magnetic field Laser-heat the magnetized fuel pressure with laser and magnetized fuel ablation pressure 3 S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010). Our project utilizes existing capabilities* at two institutions to demonstrate magneto-inertial fusion science & scaling Initial Conditions Sandia National Laboratories Laboratory for Laser Energetics • Be liner § 80-TW, 20 MJ § 60-beam, 30-TW, 30 kJ, • ρDT~ 1-4 mg/cc Z pulsed power facility OMEGA laser facility • Bz0~