Density 1 Density
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Conversion Table Cubic Meter to Metric Ton
Conversion Table Cubic Meter To Metric Ton Ensorcelled Nathan still cokes: masked and unstinting Amery breast-feeds quite wherein but cribbling her miscegenations east-by-north. Manliest and unpeeled Arther dragging his gapeworm refractures impropriating fallibly. Hilarious Darren taboo his depiction disanoints introrsely. Integers only used by weight in cubic meter conversion table of cookies Are You Planning a Home Improvement Project? Click here a stop to gauge the corresponding answer. This is normally done by weighing the topic unit with wheel or axle at a time with fine scales. Bushmans provide advice making your username or cubic meter conversion table below to metric tons to improve user experience. How soon you calculate cubic Litres? Cubic meters to tons water Conversion calculator formula. Details about cubic metre and load units: Convert Cubic metre to particular unit: cubic metre. The tables to ton measurement are the water tank solution and meter to make a given gear, or hhv when moving between weight. If we now have to metric. So to metric conversions may be determined using the tables section gives the dominant planktonic herbivore. Use this to metric tons to advice from a force per degree rankine. Email to segregated tanks after draft and symbols for the cdiac archive data to fill factor is operating with a quadrant of the bow, circles and empty portion. Wiktionary, the net dictionary. Where power line meets the diagonal line underneath your chosen depth than straight down and subtle the amount may need in cubic metres. CFI requirement for the Committee approved electricity purchases. Convert metric tons to cubic meters & vice versa. -
Binary Operator
Table of Contents Teaching and Learning The Metric System Unit 1 1 - Suggested Teaching Sequence 1 - Objectives 1 - Rules of Notation 1 - Metric Units, Symbols, and Referents 2 - Metric Prefixes 2 - Linear Measurement Activities 3 - Area Measurement Activities 5 - Volume Measurement Activities 7 - Mass (Weight) Measurement Activities 9 - Temperature Measurement Activities 11 Unit 2 12 - Objectives 12 - Suggested Teaching Sequence 12 - Metrics in this Occupation 12 - Metric Units For Binary Operation 13 - Trying Out Metric Units 14 - Binding With Metrics 15 Unit 3 16 - Objective 16 - Suggested Teaching Sequence 16 - Metric-Metric Equivalents 16 - Changing Units at Work 18 Unit 4 19 - Objective 19 - Suggested Teaching Sequence 19 - Selecting and Using Metric Instruments, Tools and Devices 19 - Which Tools for the Job? 20 - Measuring Up in Binary Operations 20 Unit 5 21 - Objective 21 - Suggested Teaching Sequence 21 - Metric-Customary Equivalents 21 - Conversion Tables 22 - Any Way You Want It 23 Testing Metric Abilities 24 Answers to Exercises and Test 25 Tools and Devices List References TEACHING AND LEARNING THE METRIC SYSTEM Thi.s metric instructional package was designed to meet job-related Unit 2 provides the metric terms which are used in this occupation metric measurement needs of students. To use this package students and gives experience with occupational measurement tasks. should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with Unit 3 focuses on job-related metric equivalents and their relation the help of experienced vocational teachers, reviewed by experts, tested ships. in classrooms in different parts of the United States, and revised before distribution. -
Density and Specific Weight Estimation for the Liquids and Solid Materials
Laboratory experiments Experiment no 2 – Density and specific weight estimation for the liquids and solid materials. 1. Theory Density is a physical property shared by all forms of matter (solids, liquids, and gases). In this lab investigation, we are mainly concerned with determining the density of solid objects; both regular-shaped and irregular-shaped. In general regular-shaped solid objects are those that have straight sides that can be measured using a metric ruler. These shapes include but are not limited to cubes and rectangular prisms. In general, irregular-shaped solid objects are those that do not have straight sides that cannot be measured with a metric ruler or slide caliper. The density of a material is defined as its mass per unit volume. The symbol of density is ρ (the Greek letter rho). m kg (1) V m3 The specific weight (also known as the unit weight) is the weight per unit volume of a material. The symbol of specific weight is γ (the Greek letter Gamma). W N (2) V m3 On the surface of the Earth, the weight W of an object is related to its mass m by: W = m · g, (3) where g is the acceleration due to the Earth's gravity, equal to about 9.81 ms-2. Using eq. 1, 2 and 3 we will obtain dependence between specific weight of the body and its density: g (4) Apparatus: Vernier caliper, balance with specific gravity platform (additional table in our case), 250 ml graduate beaker. Unknowns: a) Various solid samples (regular and irregular shaped) b) Light liquid sample (alcohol-water mixture) or heavy liquid sample (salt-water mixture). -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Etir Code Lists
eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet. -
Fluid Mechanics
I. FLUID MECHANICS I.1 Basic Concepts & Definitions: Fluid Mechanics - Study of fluids at rest, in motion, and the effects of fluids on boundaries. Note: This definition outlines the key topics in the study of fluids: (1) fluid statics (fluids at rest), (2) momentum and energy analyses (fluids in motion), and (3) viscous effects and all sections considering pressure forces (effects of fluids on boundaries). Fluid - A substance which moves and deforms continuously as a result of an applied shear stress. The definition also clearly shows that viscous effects are not considered in the study of fluid statics. Two important properties in the study of fluid mechanics are: Pressure and Velocity These are defined as follows: Pressure - The normal stress on any plane through a fluid element at rest. Key Point: The direction of pressure forces will always be perpendicular to the surface of interest. Velocity - The rate of change of position at a point in a flow field. It is used not only to specify flow field characteristics but also to specify flow rate, momentum, and viscous effects for a fluid in motion. I-1 I.4 Dimensions and Units This text will use both the International System of Units (S.I.) and British Gravitational System (B.G.). A key feature of both is that neither system uses gc. Rather, in both systems the combination of units for mass * acceleration yields the unit of force, i.e. Newton’s second law yields 2 2 S.I. - 1 Newton (N) = 1 kg m/s B.G. - 1 lbf = 1 slug ft/s This will be particularly useful in the following: Concept Expression Units momentum m! V kg/s * m/s = kg m/s2 = N slug/s * ft/s = slug ft/s2 = lbf manometry ρ g h kg/m3*m/s2*m = (kg m/s2)/ m2 =N/m2 slug/ft3*ft/s2*ft = (slug ft/s2)/ft2 = lbf/ft2 dynamic viscosity µ N s /m2 = (kg m/s2) s /m2 = kg/m s lbf s /ft2 = (slug ft/s2) s /ft2 = slug/ft s Key Point: In the B.G. -
Glossary of Terms — Page 1 Air Gap: See Backflow Prevention Device
Glossary of Irrigation Terms Version 7/1/17 Edited by Eugene W. Rochester, CID Certification Consultant This document is in continuing development. You are encouraged to submit definitions along with their source to [email protected]. The terms in this glossary are presented in an effort to provide a foundation for common understanding in communications covering irrigation. The following provides additional information: • Items located within brackets, [ ], indicate the IA-preferred abbreviation or acronym for the term specified. • Items located within braces, { }, indicate quantitative IA-preferred units for the term specified. • General definitions of terms not used in mathematical equations are not flagged in any way. • Three dots (…) at the end of a definition indicate that the definition has been truncated. • Terms with strike-through are non-preferred usage. • References are provided for the convenience of the reader and do not infer original reference. Additional soil science terms may be found at www.soils.org/publications/soils-glossary#. A AC {hertz}: Abbreviation for alternating current. AC pipe: Asbestos-cement pipe was commonly used for buried pipelines. It combines strength with light weight and is immune to rust and corrosion. (James, 1988) (No longer made.) acceleration of gravity. See gravity (acceleration due to). acid precipitation: Atmospheric precipitation that is below pH 7 and is often composed of the hydrolyzed by-products from oxidized halogen, nitrogen, and sulfur substances. (Glossary of Soil Science Terms, 2013) acid soil: Soil with a pH value less than 7.0. (Glossary of Soil Science Terms, 2013) adhesion: Forces of attraction between unlike molecules, e.g. water and solid. -
Kozeny-Carman Equation and Hydraulic Conductivity of Compacted Clayey Soils
Geomaterials, 2012, 2, 37-41 http://dx.doi.org/10.4236/gm.2012.22006 Published Online April 2012 (http://www.SciRP.org/journal/gm) Kozeny-Carman Equation and Hydraulic Conductivity of Compacted Clayey Soils Emmanouil Steiakakis, Christos Gamvroudis, Georgios Alevizos Department of Mineral Resources Engineering, Technical University of Crete, Chania, Greece Email: [email protected] Received January 24, 2012; revised February 27, 2012; accepted March 10, 2012 ABSTRACT The saturated hydraulic conductivity of a soil is the main parameter for modeling the water flow through the soil and determination of seepage losses. In addition, hydraulic conductivity of compacted soil layers is critical component for designing liner and cover systems for waste landfills. Hydraulic conductivity can be predicted using empirical relation- ships, capillary models, statistical models and hydraulic radius theories [1]. In the current research work the reliability of Kozeny-Carman equation for the determination of the hydraulic conductivity of compacted clayey soils, is evaluated. The relationship between the liquid limit and the specific surface of the tested samples is also investigated. The result- ing equation gives the ability for quick estimation of specific surface and hydraulic conductivity of the compacted clayey samples. The results presented here show that the Kozeny-Carman equation provides good predictions of the hydraulic conductivity of homogenized clayey soils compacted under given compactive effort, despite the consensus set out in the literature. Keywords: Hydraulic Conductivity; Kozeny-Carman Equation; Specific Surface; Clayey Soils 1. Introduction Chapuis and Aubertin [1] stated that for plastic - cohe- sive soils, the specific surface can be estimated from the As stated by Carrier [2], about a half-century ago Kozeny liquid limit (LL), obtained by standard Casagrande’s and Carman proposed the below expression for predict- method. -
Introducyon to the Metric System Bemeasurement, Provips0.Nformal, 'Hands-On Experiences For.The Stud4tts
'DOCUMENT RESUME ED 13A 755 084 CE 009 744 AUTHOR Cáoper, Gloria S., Ed.; Mag4,sos Joel B., Ed. TITLE q Met,rits for.Theatrical COstum g: ° INSTITUTION Ohio State Univ., Columbus. enter for Vocational Education. SPONS AGENCY Ohio State Univ., Columbus. Center for.Vocational Education. PUB DATE 76 4. CONTRACT - OEC-0-74-9335 NOTE 59p.1 For a. related docuMent see CE 009 736-790 EDRS PRICE 10-$0.8.3 C-$3.50 Plus Pdstage: DESCRIPTORS *Curriculu; Fine Arts; Instructional Materials; Learning. ctivities;xMeasurement.Instrnments; *Metric, System; S condary Education; Teaching Technigue8; *Theater AttS; Units of Sttidy (Subject Fields) ; , *Vocational Eiducation- IDENTIFIERS Costumes (Theatrical) AESTRACT . Desigliedto meet tbe job-related m4triceasgrement needs of theatrical costuming students,'thiS instructio11 alpickage is one of live-for the arts and-huminities occupations cluster, part of aset b*: 55 packages for:metric instrection in diftepent occupations.. .The package is in'tended for students who already knovthe occupaiiOnal terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package.contains performance' objectiveS, learning:Activities, and'supporting information in-the form of text,.exertises,- ard tabled. In. add±tion, Suggested teaching technigueS are included. At the'back of the package*are objective-base'd:e"luation items, a-page of answers to' the exercises,and tests, a list of metric materials ,needed for the ,activities4 references,- and a/list of supPliers.t The_material is Y- designed. to accVmodate awariety of.individual teacting,:and learning k. styles, e.g., in,dependent:study, small group, or whole-class Setivity. -
M3). Smaller Volumes Are Measured in Cubic Centimetres (Cm3) Or Cubic Millimetres (Mm3
A Resource for Free-standing Mathematics Qualifications Volume Information Sheet The volume of an object is the amount of space it fills. Large volumes are measured in cubic metres (m3). Smaller volumes are measured in cubic centimetres (cm3) or cubic millimetres (mm3). 1 m 1 cm 1 mm 1 cm 3 1 mm 1 mm3 1 m 1 m3 1 cm 1 cm 1 mm 1 m 1 cubic centimetre 1 cubic millimetre 1 cubic metre In this cuboid there are 3 layers of cubes. There are 2 rows of 4 cubes in each layer. 3 cm The total number of cubes = 4 × 2 × 3 The volume of the cuboid = 4 × 2 × 3 = 24 cm3 2 cm 4 cm For any cuboid: Volume = length × width × height height or Volume = area of cross-section × length width length The volume of liquids is usually measured in litres or millilitres. 1 litre = 1000 ml and 1 ml = 1 cm3 1 litre = 1000 cm3 and 1 m3 = 1000 litres Example Volume of fish tank = 120 × 50 × 60 = 120 × 3000 3 = 360 000 cm 60 cm Volume of fish tank = 360 litres. (Check the calculation on your calculator.) 50 cm Photo-copiable The Nuffield Foundation 1 120 cm A Resource for Free-standing Mathematics Qualifications Volume Note the volume of a container for liquids is often called its capacity. Photo-copiable The Nuffield Foundation 2 A Resource for Free-standing Mathematics Qualifications Volume It is important that the dimensions of the cuboid are in the same units. Example Find the volume of a concrete block that is 2.5 metres long, 12 centimetres wide and 10 centimetres high. -
Glossary of Notations
108 GLOSSARY OF NOTATIONS A = Earthquake peak ground acceleration. IρM = Soil influence coefficient for moment. = A0 Cross-sectional area of the stream. K1, K2, = aB Barge bow damage depth. K3, and K4 = Scour coefficients that account for the nose AF = Annual failure rate. shape of the pier, the angle between the direction b = River channel width. of the flow and the direction of the pier, the BR = Vehicular braking force. streambed conditions, and the bed material size. = BRa Aberrancy base rate. Kp = Rankine coefficient. = = bx Bias of ¯x x/xn. KR = Pile flexibility factor, which gives the relative c = Wind analysis constant. stiffness of the pile and soil. C′=Response spectrum modeling parameter. L = Foundation depth. = CE Vehicular centrifugal force. Le = Effective depth of foundation (distance from = CF Cost of failure. ground level to point of fixity). = CH Hydrodynamic coefficient that accounts for the effect LL = Vehicular live load. of surrounding water on vessel collision forces. LOA = Overall length of vessel. = CI Initial cost for building bridge structure. LS = Live load surcharge. = Cp Wind pressure coefficient. max(x) = Maximum of all possible x values. = CR Creep. M = Moment capacity. = cap CT Expected total cost of building bridge structure. M = Moment capacity of column. = col CT Vehicular collision force. M = Design moment. = design CV Vessel collision force. n = Manning roughness coefficient. = D Diameter of pile or column. N = Number of vessels (or flotillas) of type i. = i DC Dead load of structural components and nonstructural PA = Probability of aberrancy. attachments. P = Nominal design force for ship collisions. DD = Downdrag. B P = Base wind pressure. -
CAR-ANS Part 5 Governing Units of Measurement to Be Used in Air and Ground Operations
CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES Part 5 Governing UNITS OF MEASUREMENT TO BE USED IN AIR AND GROUND OPERATIONS CIVIL AVIATION AUTHORITY OF THE PHILIPPINES Old MIA Road, Pasay City1301 Metro Manila UNCOTROLLED COPY INTENTIONALLY LEFT BLANK UNCOTROLLED COPY CAR-ANS PART 5 Republic of the Philippines CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES (CAR-ANS) Part 5 UNITS OF MEASUREMENTS TO BE USED IN AIR AND GROUND OPERATIONS 22 APRIL 2016 EFFECTIVITY Part 5 of the Civil Aviation Regulations-Air Navigation Services are issued under the authority of Republic Act 9497 and shall take effect upon approval of the Board of Directors of the CAAP. APPROVED BY: LT GEN WILLIAM K HOTCHKISS III AFP (RET) DATE Director General Civil Aviation Authority of the Philippines Issue 2 15-i 16 May 2016 UNCOTROLLED COPY CAR-ANS PART 5 FOREWORD This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was formulated and issued by the Civil Aviation Authority of the Philippines (CAAP), prescribing the standards and recommended practices for units of measurements to be used in air and ground operations within the territory of the Republic of the Philippines. This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was developed based on the Standards and Recommended Practices prescribed by the International Civil Aviation Organization (ICAO) as contained in Annex 5 which was first adopted by the council on 16 April 1948 pursuant to the provisions of Article 37 of the Convention of International Civil Aviation (Chicago 1944), and consequently became applicable on 1 January 1949. The provisions contained herein are issued by authority of the Director General of the Civil Aviation Authority of the Philippines and will be complied with by all concerned.