Biological and Molecular Properties of Sweet Potato Leaf Curl Virus. Pongtharin Lotrakul Louisiana State University and Agricultural & Mechanical College

Total Page:16

File Type:pdf, Size:1020Kb

Biological and Molecular Properties of Sweet Potato Leaf Curl Virus. Pongtharin Lotrakul Louisiana State University and Agricultural & Mechanical College Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2000 Biological and Molecular Properties of Sweet Potato Leaf Curl Virus. Pongtharin Lotrakul Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Lotrakul, Pongtharin, "Biological and Molecular Properties of Sweet Potato Leaf Curl Virus." (2000). LSU Historical Dissertations and Theses. 7374. https://digitalcommons.lsu.edu/gradschool_disstheses/7374 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm m aster UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. BIOLOGICAL AND MOLECULAR PROPERTIES OF SWEET POTATO LEAF CURL VIRUS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Plant Pathology and Crop Physiology by Pongtharin Lotrakul B.S., Chulalongkom University, 1992 M.S., Mahidol University, 1995 December, 2000 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9998693 ___ ® UMI UMI Microform 9998693 Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. To Mom & Dad 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my major professor, Dr. R. A. Valverde, for his guidance, encouragement, patience, and friendship throughout my doctoral study at Louisiana State University. I could not accomplish this work without his support My appreciation is extended to Dr. C. A. Clark for his valuable advice. I would also like to thank the other members of my graduate committee, Drs. K. E. Damann, D. S. Shih, and C. E. Johnson for their constructive comments. I am grateful for the support that I had received from Dr. J. P. Snow. My special thank is extended to Mrs. Pat Hives for the generosity she gave me from my very first days at LSU. Additionally, appreciation is extended to the following people for their support and friendship: S. Jeonggu, A. D. Landry, E. R. de Souto, and Y.-K. Goh. I would also like to thank Dr. S. Hurtt from the APHIS Quarantine Laboratory, USDA, Beltsville, MD, for the Ipomoeasetosa DNA used in the genetic diversity study, M. W. Hoy for the information on virus detection, and Drs. M. M. Blackwell and S. O. Suh from the Department of Biological Sciences for their helpful advice in phylogenetic analysis. I gratefully acknowledge the financial support from the Ministry of University Affairs, Thailand, and LSU. Completion of my degree would not be possible without them. Finally, I would like to extend my sincere gratitude to my beloved parents, brother, and sister for their patience, understanding, and encouragement. I am deeply grateful for the unconditioned love that my parents have given me throughout my life. I could not have gone this far without them. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGEMENTS........................................................................................ iii LIST OF TABLES.................................................................................................... v LIST OF FIGURES.................................................................................................. vi ABSTRACT.....................................................-............................................................ vii CHAPTER 1. INTRODUCTION........................................................................... 1 CHAPTER 2. REVIEW OF LITERATURE.......................................................... 3 2.1 Importance of Sweet Potato as Food Source .................................... 3 2.2 Physiology of Sweet Potato .............................................................. 4 2.3 Sweet Potato Viruses...........................................................................5 2.4 The Genus Begomovirus........................................................................ 18 2.5 Phylogenetic Relationships between Begomoviruses ...................... 24 2.6 The Emerging Begomoviruses...........................................................25 CHAPTER 3. DETECTION OF A GEMINIVIRUS INFECTING SWEET POTATO IN THE UNITED STATES.......................................... 28 3.1 Introduction ........................................................................................... 28 3.2 Materials and Methods ............................................................................... 29 3.3 Results......................................................................................................... 33 3.4 Discussion ................................................................................................ 36 CHAPTER 4. CLONING OF A DNA-A-LEKE GENOMIC COMPONENT OF SWEET POTATO LEAF CURL VIRUS : NUCLEOTIDE SEQUENCE AND PHYLOGENETIC RELATIONSHIPS 41 4.1 Introduction ........................................................................................... 41 4.2 Materials and Methods ...............................................................................42 4.3 Results......................................................................................................... 45 4.4 Discussion ................................................................................................ 58 CHAPTER 5. GENETIC DIVERSITY OF SWEET POTATO LEAF CURL V IRU S......................................................................................................69 5.1 Introduction ........................................................................................... 69 5.2 Materials and Methods ............................................................................... 70 5.3 Results.........................................................................................................72 5.4 Discussion ................................................................................................ 73 CHAPTER 6. SUMMARY AND CONCLUSION .................................................. 80 6.1 Summary ................................................................................................. 80 6.2 Conclusion ............................................................................................. 81 REFERENCES.............................................................................................................. 82 APPENDIX: LETTERS OF PERMISSION......................................................... 90 VITA ................................................................................................................................ 93 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES 3.1. Sweet potato whitefly ( Bemisia tabaci biotype B) transmission of the United States isolate of Sweet potato leaf curl virus after 2-day acquisition and transmission feeding periods .......................................... 34 4.1. Percent nucleotide sequence identity between DNA-A-like genomic component of the United States isolate of Sweet potato leaf curl virus and DNA-A or DNA-A-like genomic component of other begomoviruses 51 4.2. Percent nucleotide sequence identity and derived
Recommended publications
  • Survey, Incidence and Serological Identification of Papaya Leaf Curl Virus in Eastern Uttar Pradesh
    Indian Phytopath. 68 (1) : 123-126 (2015) SHORT COMMUNICATION Survey, incidence and serological identification of Papaya leaf curl virus in eastern Uttar Pradesh D.K. DUBEY1, A.K. TIWARI2* and P.P. UPADHYAY1 1Department of Botany, DDU Gorakhpur University, Gorakhpur 273 009, Uttar Pradesh, India 2Central Lab, U.P. Council of Sugarcane Research, Shahjahnapur 242 001, Uttar Pradesh, India Key words: Papaya, Geminivirus, TLCNDV, DAC-ELISA, disease incidence Papaya (Carica papaya L; family ‘Caricaceae’) is an During survey, 5-35% incidence of papaya leaf curl important fruit crop believed to be native of southern disease was recorded. A total of 65 locations were Mexico and neighboring Central America. It is grown in surveyed and the maximum disease incidence of 35% tropical and subtropical countries all over the world. India was recorded at nearly 12 locations (Table 1). The is the largest producer of papaya in the world. The limiting incidence of PLCV was higher in mature and older plants factor of papaya cultivation is its susceptibility to ring spot, in comparison to young plants. The maximum disease leaf curl, mosaic and distortion diseases (6). Among incidences were recorded during July-March. these, papaya leaf curl disease caused by PLCV is one The most common symptoms observed were severe of most serious threat to papaya cultivation in most of curling, crinkling and rolling of leaves, reduction and papaya-growing countries. Papaya leaf curl disease is deformation of petioles, internodes and main shoots. The caused by bipartite geminivirus (3).The vector associated leaves were drastically reduced in size and showed vein with disease is identified as whitefly (Bemisia tabaci) (5).
    [Show full text]
  • Frequent Occurrence of Mungbean Yellow Mosaic India Virus in Tomato Leaf Curl Disease Afected Tomato in Oman M
    www.nature.com/scientificreports OPEN Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease afected tomato in Oman M. S. Shahid 1*, M. Shafq 1, M. Ilyas2, A. Raza1, M. N. Al-Sadrani1, A. M. Al-Sadi 1 & R. W. Briddon 3 Next generation sequencing (NGS) of DNAs amplifed by rolling circle amplifcation from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identifed a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identifed infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confrmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efciency. This is the frst identifcation of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This fnding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material.
    [Show full text]
  • BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J
    TRI-OLOGY, Vol. 47, No. 5 Patti J. Anderson, Ph.D., Managing Editor SEPTEMBER-OCTOBER 2008 DACS-P-00124 Wayne N. Dixon, Ph. D., Editor Page 1 of 13 BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J. Anderson, Ph.D. For this period, 167 specimens were submitted to the Botany Section for identification, and 1,418 were received from other sections for identification/name verification for a total of 1,585. In addition, 57 specimens were added to the herbarium, and 48 specimens of invasive species were prepared for the Division of Forestry’s Forest Health Project. Some of the samples received for identification are discussed below: Helianthus simulans E. E. Wats. (an endemic North American genus of 49 species, occurring throughout the United States and adjacent Canada, as well as in Baja California). Compositae (Asteraceae). Muck sunflower. It is unfortunate that such an attractive plant has such an unattractive common name. Growing to more than 2 m tall, this sunflower makes a showy and impressive specimen in the garden. In its best forms, the lanceolate leaves are leathery and dark green, somewhat reminiscent of those of the oleander (Nerium oleander). The flower heads, with bright yellow rays and usually a reddish- purple disk, are borne in profusion in October and November and vary from 7-10 cm across. Although it grows at least twice as tall and the leaves are broader and not revolute (turned under along the margins), it is often confused with the very common Helianthus simulans Photograph courtesy of Sally Wasowski and swamp sunflower (H.
    [Show full text]
  • An Unusual Alphasatellite Associated with Monopartite Begomoviruses Attenuates Symptoms and Reduces Betasatellite Accumulation
    Journal of General Virology (2011), 92, 706–717 DOI 10.1099/vir.0.025288-0 An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation Ali M. Idris,1,2 M. Shafiq Shahid,1,3 Rob W. Briddon,3 A. J. Khan,4 J.-K. Zhu2 and J. K. Brown1 Correspondence 1School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA J. K. Brown 2Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, [email protected] Thuwal 23955-6900, Kingdom of Saudi Arabia 3National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan 4Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman The Oman strain of Tomato yellow leaf curl virus (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type Ageratum yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and Papaya leaf curl virus from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and Nicotiana benthamiana. Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms.
    [Show full text]
  • Identification, Characterisation and Expression of PRSV-P Resistance Genes in Carica and Vasconcellea
    Identification, Characterisation and Expression of PRSV-P Resistance Genes in Carica and Vasconcellea Author Mohd Razali, Razean Haireen Published 2013 Thesis Type Thesis (PhD Doctorate) School School of Biomolecular and Physical Sciences DOI https://doi.org/10.25904/1912/91 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366827 Griffith Research Online https://research-repository.griffith.edu.au Identification, Characterisation and Expression of PRSV-P Resistance Genes in Carica and Vasconcellea Razean Haireen Mohd Razali MSc (Hons) School of Biomolecular and Physical Sciences Science, Environment, Engineering and Technology Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy (Ph.D) January 2013 Abstract Papaya (Carica papaya L.) is one of the major tropical fruit crops worldwide; however, commercial and local production is reduced by several diseases and pests. Papaya Ringspot Virus type P (PRSV-P) is a serious disease of Carica papaya, and all known varieties of papaya are susceptible. Vasconcellea parviflora is a PRSV-P susceptible species. Researchers have identified PRSV-P resistant genes in Vasconcellea spp., which were formerly included in the genus Carica. Of the 21 Vasconcellea species, only one, Vasconcellea pubescens sometimes called Vasconcellea cundinamarcensis, has been consistently reported worldwide to be resistant or immune to PRSV-P for more than 60 years. In a previous study at Griffith University in Southeast Queensland, a functional PRSV-P resistance marker was identified in a mapping population of F2 plants of V. pubescens x V. parviflora. The resistance (R) gene identified in V.
    [Show full text]
  • Principles of Disease Management in Fruit Crops
    International Clinical Pathology Journal Research Article Open Access Principles of disease management in fruit crops Introduction Volume 4 Issue 5 - 2017 India is the second largest producer of fruits in the world, contributing 10% of the total production. But, the total production is quite below (45.496million tons from 37.96million hectares) SK Thind the requirements at the recommended dietary allowances of 90gm Punjab Agricultural University, India of fruits per capita per day as laid by Indian Council of Medical Correspondence: SK Thind, Punjab Agricultural University, Research. Accordingly, 90million tones of fruits are required to Ludhiana–141 004, Punjab, India, Email [email protected] feed the one billion population of India. Since, it is not possible to attain such a high target, as plant diseases are the major constraints Received: April 17, 2017 | Published: May 16, 2017 in increasing the productivity of fruit crops. Huge pre–and post– harvest losses are caused by various fruit diseases and unfavorable environments leading to the total failure of the crops. Citrus decline, apple scab, mango malformation, guava wilt, fire blights, banana disease produces several valuable signs/symptoms and they are bunchy top and wilt, brown rots of stone fruits, crown galls, downy collectively called syndrome. Spore–is a minute propagating unit and powdery mildews are the destructive fruit diseases causing huge responsible for the production of new individuals of the same species. losses to the fruit industry worldwide.1 Intensive agriculture provides Inoculums–is the infectious material or portion of the pathogen that greatest opportunities for the buildup of many new diseases and can cause a disease.
    [Show full text]
  • Tomato Leaf Curl Sudan Virus (TLCSDV) Causing Leaf Curl Disease on a New Host Amaranthus Cruentus L
    POJ 10(1):20-27 (2017) ISSN:1836-3644 doi: 10.21475/poj.10.01.17.292 Tomato Leaf Curl Sudan Virus (TLCSDV) causing leaf curl disease on a new host Amaranthus cruentus L. Sayed Sartaj Sohrab Special Infectious Agents Unit; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia *Corresponding author: [email protected] Abstract Amaranthus leaf curl disease symptom was observed in the farmer’s field based at Jeddah, Saudi Arabia. This crop used as leafy vegetables in many countries. In this study, a field survey was conducted in April 2014 and naturally infected Amaranthus leaf samples were collected to identify the associated virus with leaf curl disease. The causative agent was transmitted through whiteflies (Bemisia tabaci) from naturally infected leaves to healthy Amaranthus seedlings. The begomovirus infection was identified by PCR by using specific primers. The full viral genome was amplified by rolling circle amplification. The presence of betasatellites was also confirmed by using betasatellites specific primers. The full viral genomes as well as betasatellites were amplified, cloned and sequenced. The full-length viral genome sequence analysis showed the highest (99.9%) homology with Tomato leaf curl Sudan Virus infecting tomato reported from the Arabian Peninsula. The betasatellites sequence analysis showed the highest identity (99.3%) with Tomato leaf curl betasatellites-Yemen. The phylogenetic analysis was performed by using both full as well as betasatellites genome and full genome formed the closest cluster with Tomato leaf curl Sudan virus while betasatellites genome formed closed cluster with tomato yellow leaf curl Yemen betasatellites. The recombination analysis was performed and results showed that the associated virus could be a variant of Tomato leaf curl Sudan virus, a virus that occurs in Sudan, Yemen and Arabian Peninsula.
    [Show full text]
  • Characterization, Phylogeny and Recombination Analysis of Pedilanthus Leaf Curl Virus-Petunia Isolate and Its Associated Betasat
    Shakir et al. Virology Journal (2018) 15:134 https://doi.org/10.1186/s12985-018-1047-y RESEARCH Open Access Characterization, phylogeny and recombination analysis of Pedilanthus leaf curl virus-Petunia isolate and its associated betasatellite Sara Shakir1,3, Muhammad Shah Nawaz-ul-Rehman1*, Muhammad Mubin1 and Zulfiqar Ali2 Abstract Background: Geminiviruses cause major losses to several economically important crops. Pedilanthus leaf curl virus (PeLCV) is a pathogenic geminivirus that appeared in the last decade and is continuously increasing its host range in Pakistan and India. This study reports the identification and characterization of PeLCV-Petunia from ornamental plants in Pakistan, as well as geographical, phylogenetic, and recombination analysis. Methods: Viral genomes and associated satellites were amplified, cloned, and sequenced from Petunia atkinsiana plants showing typical geminivirus infection symptoms. Virus-satellite complex was analyzed for phylogenetic and recombination pattern. Infectious clones of isolated virus and satellite molecules were constructed using a partial dimer strategy. Infectivity analysis of PeLCV alone and in combination with Digera yellow vein betasatellite (DiYVB) was performed by Agrobacterium infiltration of Nicotiana benthamiana and Petunia atkinsiana plants with infectious clones. Results: PeLCV, in association with DiYVB, was identified as the cause of leaf curl disease on P. atkinsiana plants. Sequence analysis showed that the isolated PeLCV is 96–98% identical to PeLCV from soybean, and DiYVB has 91% identity to a betasatellite identified from rose. Infectivity analysis of PeLCV alone and in combination with DiYVB, performed by Agrobacterium infiltration of infectious clones in N. benthamiana and P. atkinsiana plants, resulted in mild and severe disease symptoms 14 days after infiltration, respectively, demonstrating that these viruses are natural disease-causing agents.
    [Show full text]
  • Molecular Characterization of Tomato Leaf Curl Virus (Tolcv) in South Gujarat, India
    Int.J.Curr.Microbiol.App.Sci (2017) 6(3): 473-481 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 473-481 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.055 Molecular Characterization of Tomato Leaf Curl Virus (ToLCV) in South Gujarat, India M. Vanthana1*, L. Mahatma1, T.V. Ghevariya1 and R. Saranya2 1Department of Plant Pathology, NMCA, NAU, Navsari, Gujarat 396 450, India 2Department of Plant Pathology, JAU, Junagadh, Gujarat 362 001, India *Corresponding author ABSTRACT The present study was conducted to characterize Leaf Curl Virus infecting tomato in south Gujarat region showing typical leaf curl symptom with upward/downward curling along K e yw or ds with vein clearing of the leaves. A part of DNA-A molecule of ~1200 bp was amplified with a Begomovirus specific primers confirming it to be Begomovirus. On sequencing, a 1125 Begomovirus, bp nucleotide sequence (Accession no- KU921251) was obtained. Amplified fragment had DNA-A, ToLCV, PCR, Phylogeny two genes viz., virus coat protein (V1) gene and pre coat protein (V2) gene. The sequenced virus showed highest identity (94%) with Tomato leaf curl Gujarat virus [Nepal] segment Article Info DNA A, [AY234383.1] followed by 93% sequence identity with thirteen different tomato Begomoviruses which were the strains/isolates of Tomato leaf curl Gujarat virus or Accepted: Tomato leaf curl New Delhi virus [DQ629101.2]. The virus was named as Tomato leaf 10 February 2017 curl Gujarat virus [Nepal] [India:Nvs: LC:Tom:2016] and was abbreviated as ToLCGV Available Online: [Nepal] [India:Nvs: LC:Tom:2016].
    [Show full text]
  • Recovery Plan Cotton Leaf Curl Disease Caused by A
    Recovery Plan Cotton leaf curl disease caused by a leaf curl virus complex (Begomovirus, Geminiviridae): Whitefly-transmitted ssDNA viruses with ssDNA satellites, causing diseases of cotton, vegetables, and ornamentals December 15, 2016 (revised December 2, 2017) Table of Contents Executive Summary ............................................................................................................... 1 Primary Contributor ............................................................................................................... 4 Reviewers ............................................................................................................................... 4 I. Introduction ...................................................................................................................... 5 II. Signs and Symptoms ...................................................................................................... 15 III. Spread and Risk ............................................................................................................. 18 IV. Detection and Identification ........................................................................................... 21 V. USDA Pathogen Permits and Regulations ..................................................................... 22 VI. Response ........................................................................................................................ 23 VII. Economic Impact and Compensation ........................................................................
    [Show full text]
  • 100 Years of Change in the Flora of the Carolinas
    ASTERACEAE 224 Zinnia Linnaeus 1759 (Zinnia) A genus of about 17 species, herbs, of sw. North America south to South America. References: Smith in FNA (2006c); Cronquist (1980)=SE. 1 Achenes wingless; receptacular bracts (chaff) toothed or erose on the lip..............................................................Z. peruviana 1 Achenes winged; receptacular bracts (chaff) with a differentiated fimbriate lip........................................................Z. violacea * Zinnia peruviana (Linnaeus) Linnaeus, Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K, SE; ? Z. pauciflora Linnaeus – S] * Zinnia violacea Cavanilles, Garden Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K; ? Z. elegans Jacquin – S, SE] BALSAMINACEAE A. Richard 1822 (Touch-me-not Family) A family of 2 genera and 850-1000 species, primarily of the Old World tropics. References: Fischer in Kubitzki (2004). Impatiens Linnaeus (Jewelweed, Touch-me-not, Snapweed, Balsam) A genus of 850-1000 species, herbs and subshrubs, primarily tropical and north temperate Old World. References: Fischer in Kubitzki (2004). 1 Corolla purple, pink, or white; plants 3-6 (-8) dm tall; stems puberulent or glabrous; [cultivated alien, rarely escaped]. 2 Sepal spur strongly recurved; stems puberulent..............................................................................................I. balsamina 2 Sepal spur slightly
    [Show full text]
  • An Inventory of Four New Angiospermic Climbers Record from Coastal Districts of Odisha
    International Journal of Advanced Scientific Research and Management, Volume 3 Issue 10, Oct 2018 www.ijasrm.com ISSN 2455-6378 An Inventory of Four New Angiospermic Climbers Record from Coastal Districts of Odisha Gouri Sankar Juga Prakash Jena1, Ramakanta Mishra2 and Kunja Bihari Satapathy3 1Department of Botany, S.G. College, Kanikapada, Jajpur -755011, Odisha. 2Environment Laboratory, Post Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar - 751004, Odisha. 3School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar-752050, Odisha. Corresponding author: Kunja Bihari Satapathy Abstract site in the field. Then the specimens were brought to Post Graduate Department of Botany, Utkal The present paper enunciates with the University, Bhubaneswar, where morphological documentation of four unreported climbers and characters were thoroughly verified for each twinners belonging to four different plant families, species. Meticulous scrutiny of all the pertinent from coastal Odisha. They are Clematis dioica L., literatures (Behera and Misra, 2007; Biswal et. al., Cocculus carolinus (L.)DC., Ipomoea amnicola T. 2013; Das and Misra, 2000; Dash and Mishra,1998; Morong, Macroptilium atropurpureum (Mocino & Jena et. al., 2018; Kalidass and Murugan, 2016; Sesse ex DC.) Urban, Ipomoea triloba L. Kar et. al., 2017; Mishra et. al., 2009; Mishra et. Comprehensive description, geographic allocation, al., 2018; Murugan et. al., 2015; Pattanaik et. al., and coloured snapshots of each species are 2006; Reddy and Pattanaik, 2011; Rout, et. al., furnished. 2012; Saravanan, et. al., 2014) as well as the Key words: Climbers, twinner, coastal Odisha, relevant Floras of the area under study (The Botany geographic allocation. of Bihar and Orissa: Haines,1921- 1925; Supplement to the Botany of Bihar and Orissa: 1.
    [Show full text]