Structure of an Auxilin-Bound Clathrin Coat and Its Implications for The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome. -
Gene Targeting Therapies (Roy Alcalay)
Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2 -
University of Groningen the Human HSP70/HSP40 Chaperone Family
University of Groningen The human HSP70/HSP40 chaperone family Hageman, Jurre IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hageman, J. (2008). The human HSP70/HSP40 chaperone family: a study on its capacity to combat proteotoxic stress. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 CHAPTER 1 Introduction - Structural and functional diversities between members of the human HSPH, HSPA and DNAJ chaperone families Jurre Hageman and Harm H. -
Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson’S Disease and Huntington’S Disease
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease TESI DOCTORAL 2018 Programa de Doctorat en Neurociències Institut de Neurociències Tesi realitzada al laboratori de Malalties Neurodegeenratives de l’Institut de Recerca de la Vall d’Hebron (VHIR) Doctorand Director Tutor Sandra Franco Iborra Miquel Vila Bover José Rodríguez Álvarez Co-directora Co-directora Celine Perier Marta Martínez Vicente i AGRAÏMENTS En primer lloc vull agraïr al Miquel Vila per l’oportunitat que em va donar de començar a fer la tesi doctoral al seu lab. Gràcies per tenir sempre la porta oberta del teu despatx, per la confiança dipositada en mi i per tot el que m’has ensenyat durant tots aquests anys. A més, he tingut la sort de tenir no només un director de tesis sinó tres! Celine muchas gracias por estar siempre ahí, por ensenyarme tu manera de hacer ciencia (que me encanta!) y por ser siempre tan positiva. En mi manera de trabajar hay un poquito de ti y espero ir pasando este conocimiento a los demás porque en todo laboratorio debería ser obligatorio que hubiera alguien como tu. -
The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors. -
Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P. -
Unveiling Ubiquitination As a New Regulatory Mechanism of the ESCRT-III Protein CHMP1B Xènia Crespo-Yañez
Unveiling Ubiquitination as a New Regulatory Mechanism of the ESCRT-III Protein CHMP1B Xènia Crespo-Yañez To cite this version: Xènia Crespo-Yañez. Unveiling Ubiquitination as a New Regulatory Mechanism of the ESCRT-III Pro- tein CHMP1B. Cellular Biology. Université Grenoble Alpes, 2017. English. NNT : 2017GREAV035. tel-01684692 HAL Id: tel-01684692 https://tel.archives-ouvertes.fr/tel-01684692 Submitted on 15 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : Biologie Cellulaire Arrêté ministériel : 25 mai 2016 Présentée par Xènia CRESPO-YAÑEZ Thèse dirigée par Marie-Odile FAUVARQUE préparée au sein du Laboratoire Biologie à Grande Echelle, Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble dans l'École Doctorale de Chimie et Sciences du Vivant Découverte de l'ubiquitination en tant que nouveau mécanisme de régulation de la protéine ESCRT-III CHMP1B Thèse soutenue publiquement le 13 octobre 2017 devant le jury composé de : Mme Christel BROU Directrice de recherche, Institut Pasteur, Examinatrice M. Pierre COSSON Professeur, Université de Genève, Rapporteur M. Jean-René HUYNH Directeur de recherche, Collège de France, Rapporteur Mme Marie-Odile FAUVARQUE Directrice de recherche, CEA, Directrice de thèse M. -
Genome-Wide Investigation of Cellular Functions for Trna Nucleus
Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions. -
Whole-Genome Sequencing of Tarim Red Deer
Ababaikeri et al. Frontiers in Zoology (2020) 17:31 https://doi.org/10.1186/s12983-020-00379-5 RESEARCH Open Access Whole-genome sequencing of Tarim red deer (Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment Buweihailiqiemu Ababaikeri1,2†, Shamshidin Abduriyim3,4† , Yilamujiang Tohetahong1, Tayerjan Mamat1, Adil Ahmat1 and Mahmut Halik1* Abstract Background: The initiation of desert conditions in the Tarim Basin in China since the late Miocene has led to the significant genetic structuring of local organisms. Tarim Red Deer (Cervus elaphus yarkandensis, TRD) have adapted to the harsh environmental conditions in this basin, including high solar radiation and temperature, aridity, and poor nutritional conditions. However, the underlying genetic basis of this adaptation is poorly understood. Results: We sequenced the whole genomes of 13 TRD individuals, conducted comparative genomic analyses, and estimated demographic fluctuation. The ∂a∂i model estimated that the TRD and Tule elk (Cervus canadensis nannodes) populations diverged approximately 0.98 Mya. Analyses revealed a substantial influence of the Earth’s climate on the effective population size of TRD, associated with glacial advances and retreat, and human activities likely underlie a recent serious decline in population. A marked bottleneck may have profoundly affected the genetic diversity of TRD populations. We detected a set of candidate genes, pathways, and GO categories related to oxidative stress, water reabsorption, immune regulation, energy metabolism, eye protection, heat stress, respiratory system adaptation, prevention of high blood pressure, and DNA damage and repair that may directly or indirectly be involved in the adaptation of TRD to an arid-desert environment. -
Implications for Parkinson's Disease
Identification of parkin interactions: implications for Parkinson’s disease William Lloyd Haylett Dissertation presented for the degree Doctor of Philosophy in Science (Human Genetics) in the Faculty of Medicine and Health Sciences at Stellenbosch University Supervisor: Prof. Soraya Bardien Co-supervisors: Dr. Craig Kinnear and Prof. Jonathan Carr December 2015 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: …………………………………….. Date: ……………………………… Copyright © 2015 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za ABSTRACT Parkinson’s disease (PD) is a progressive and debilitating neurodegenerative disorder, characterized by a distinct motor phenotype and the selective loss of dopaminergic neurons in the substantia nigra. While the etiology of PD is not fully understood, it is thought to involve a combination of different genetic, cellular and environmental factors that independently or concurrently contribute to neurodegeneration. To date, several PD-causing genes have been identified, and investigations of their function have provided novel insights into the pathobiology of disease. Particularly interesting among the known PD genes is parkin, mutations in which are the most common genetic cause of early onset PD. Parkin is an E3 ligase that ubiquitinates protein substrates and targets such substrates for degradation via the ubiquitin proteasome system (UPS). -
Downloaded from Bioscientifica.Com at 10/02/2021 03:44:31PM Via Free Access 2 E MEIMARIDOU and Others
1 REVIEW From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery Eirini Meimaridou, Sakina B Gooljar and J Paul Chapple Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK (Correspondence should be addressed to J P Chapple; Email: [email protected]) Abstract Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales – this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing. Journal of Molecular Endocrinology (2009) 42, 1–9 Introduction Hsp90 chaperone systems functioning throughout the life cycle of steroid receptors clearly illustrates that To become functional and fulfil their cellular roles, the chaperones do not function solely in the folding of vast majority of proteins must fold into complex three- newly translated proteins, but are required for multiple dimensional shapes. Proteins may not be able to fold fully cellular processes. until their polypeptide chain and/or other subunits are In fact, for the Hsc70 chaperone machinery, a very fully synthesized. Partially folded proteins may have broad range of localized functions have been identified undesirable interactions with other essential cellular (Young et al. -
Doc \\ Heat Shock Proteins: Auxilin, Binding Immunoglobulin Protein
IC7LIXK3OJ \\ Heat Shock Proteins: Auxilin, Binding Immunoglobulin Protein, Dnaja1, Dnaja2, Dnaja3, Dnajb1, Dnajb11,... / Book Heat Sh ock Proteins: A uxilin, Binding Immunoglobulin Protein, Dnaja1, Dnaja2, Dnaja3, Dnajb1, Dnajb11, Dnajb2, Dnajb4, Dnajb6, Dnajb9, Dnaj By Source Wikipedia BooksLLC.net, 2016. Paperback. Book Condition: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. READ ONLINE [ 3.02 MB ] Reviews This sort of publication is almost everything and taught me to hunting forward and much more. Yes, it is actually play, continue to an amazing and interesting literature. I am pleased to tell you that this is basically the best book we have read through inside my individual life and could be he finest book for ever. -- Enrique Ritchie Sr. This sort of ebook is everything and got me to searching in advance plus more. I could comprehended everything out of this created e pdf. You are going to like just how the author compose this pdf. -- Prof. Ethelyn Hoeger QHLCUQXDOQ \ Heat Shock Proteins: Auxilin, Binding Immunoglobulin Protein, Dnaja1, Dnaja2, Dnaja3, Dnajb1, Dnajb11,... ~ eBook See Also Ninja Adventure Book: Ninja Book for Kids with Comic Illustration: Fart Book: Ninja Skateboard Farts (Perfect Ninja Books for Boys - Chapter Books for Kids Age 8 - 10 with Comic Pictures Audiobook with Book) Createspace, United States, 2013. Paperback. Book Condition: New. 229 x 152 mm. Language: English . Brand New Book ***** Print on Demand *****.BONUS - Includes FREE Dog Farts Audio Book for Kids Inside! For a very time limited period you can download... TJ new concept of the Preschool Quality Education Engineering: new happy learning young children (3-5 years old) daily learning book Intermediate (2)(Chinese Edition) paperback.