Suppressors of Oncogenic Cbl in the Drosophila Eye

Total Page:16

File Type:pdf, Size:1020Kb

Suppressors of Oncogenic Cbl in the Drosophila Eye Suppressors of oncogenic Cbl in the Drosophila eye. Rowena Tenri Sannang ORCID identifier- 0000-0002-9259-5536 Master of Philosophy May 2018 Department of Anatomy and Neuroscience University of Melbourne Submitted in total fulfilment of the requirements of the degree ABSTRACT Cbl is an E3 ligase, and downregulates several cellular signalling pathways, in this role by targeting receptor tyrosine kinases for endocytosis. Mammalian Cbl was first identified as the full-length isoform of v-Cbl, a C-terminal truncated dominant negative oncogene that permits binding of v-Cbl to Cbl targets but does not facilitate their ubiquitination. This results in constitutive activation of the receptor tyrosine kinase. In this thesis, I used a Drosophila analogue of v-Cbl, named Dv-cbl. GMR>Dv-cbl had been used prior to the commencement of this study to screen for modifiers of its rough and overgrown eye phenotype using the Gene search system, a transposon-based inducible expression system. In this study, a subset of the suppressors of the GMR>Dv- cbl phenotype from that screen, and two other representative lines were further investigated. The published interactions and functions of the genes implicated by the GS lines are discussed and a method of suppression of the GMR>Dv-cbl phenotype by each line is suggested. In the published work presented in this thesis, the Akap200 expressing lines EP2254 and GS2208 were further studied. Expression of Akap200 in EP2254 was confirmed via mRNA in situ hybridisation, and its ability to also suppress the Ras85DV12 phenotype was confirmed. The ability of EP2254 to suppress GMR-Dv-cbl and sev-Ras85DV12 coexpression was confirmed. When GMR-Dv-cbl and sev-Ras85DV12 are coexpressed, a phenotype that is greater than the cumulative phenotype of each would suggest arises. In fact, GMR-Dv- cbl (where Dv-cbl was directly driven from the GMR promoter) was used instead of GMR-Gal4, UAS-Dv-cbl (GMR>Dv-cbl) as the coexpression of GMR>Dv-cbl and sev- Ras85DV12 results in lethality, and coexpression of GMR-Dv-cbl and sev-Ras85DV12 did not. Alone, each has a mildly rough eye. I showed that EP2254 was able to suppress this phenotype and that this suppression was partially independent of apoptosis. The endogenous function of Akap200 in the Drosophila eye was then investigated. An mRNA in situ hybridisation experiment showed that endogenous Akap200 is present in the eye disc, and a series of immunohistochemical stains showed that Akap200 was expressed in a subset of photoreceptor cells. Knockdown of Akap200 using RNAi lines i showed that endogenous Akap200 was having a modifying effect on the GMR>Dv-cbl phenotype, as knockdown of Akap200 enhances the GMR>Dv-cbl phenotype. A recent study suggests that Notch is protected from internalisation by Cbl by Akap200, which is consistent with the results in this thesis. ii PREFACE Chapter 4 consists solely of the paper published with myself as the first author, Hannah Robertson and Nicole Siddall as second and third authors respectively, and Gary Hime as the senior author. This paper was published by Molecular and Cellular Biochemistry on 8 July 2012 (online) (and then in the October 2012 issue) and was titled: “Akap200 suppresses the effects of Dv-cbl expression in the Drosophila eye”. As stated in the declaration of thesis with publication form, I contributed 80% of the work towards this paper. I designed and carried out the experiments under the advice of Hannah Robertson and Gary Hime, Nicole Siddall assisted with imaging of Figure 5, and the manuscript was prepared by myself with input from all authors. This work was sponsored by the National Health and Medical Research Council Project Grant 350316 awarded to Gary Hime and Hannah Robertson. iv ACKNOWLEDGEMENTS I would first like to thank my supervisors, Gary Hime and Hannah Robertson, thanks for their guidance, encouragement, and patience through this entire process. I would also like to thank my advisory committee Robb De Iongh and Peter Kitchener, for their help and advice, and Franca Casagranda for help with molecular work. I would like to thank my family, especially my spouse Leo Bullimore, and my mother Meryl Martin, for always being there for me and supporting me. Other family members who I would like to thank for their support and encouragement are: Amri Sannang, Beata Masternak, Neil Martin, Dawn Martin, Carol Bullimore, Brian Bullimore, Erin Dowdle, Joel Stevens, Gemma Stevens, Bronte Stevens, Callum Stevens, and Ava Stevens. I’d also like to thank my friends- Lisa McLennan, Carina Heppell, Anna Johnson, Jessica Peters, Mia De Seram, Mirijana Cipetic, and Aggie Napodowski, and the current and former lab members of the Fly labs in the department during my time there, especially Rebecca Parsons, Marina Kalcina, Tricia Dominado, and Elena Savva for their help with fly care. v TABLE OF CONTENTS ABSTRACT .............................................................................................................................. i DECLARATION .................................................................................................................... iii PREFACE ............................................................................................................................... iv ACKNOWLEDGEMENTS .................................................................................................... v TABLE OF CONTENTS ....................................................................................................... vi INDEX OF TABLES ............................................................................................................... x INDEX OF FIGURES ............................................................................................................ xi COMMON ABBREVIATIONS USED IN THIS THESIS ................................................ xii 1 INTRODUCTION ................................................................................................................ 1 1.1 The Cbl family of genes. ..................................................................................................... 2 1.2 Cbl mutants. ......................................................................................................................... 3 1.3 Cbl function ......................................................................................................................... 6 1.4 Cbl in Drosophila eye development .................................................................................... 7 1.5 The screen performed prior to this study identified a number of suppressors of Dv- Cbl ........................................................................................................................................... 11 1.6 Thesis Aims ....................................................................................................................... 14 1.7 A short word on Drosophila .............................................................................................. 14 1.8 Summary ............................................................................................................................ 15 2 MATERIALS AND METHODS ....................................................................................... 16 2.1 MATERIALS .................................................................................................................... 17 2.1.1 Chemicals and Reagents ................................................................................................. 17 2.1.2 Nucleotides ..................................................................................................................... 17 2.1.3 Antibodies ....................................................................................................................... 18 2.1.4 Drosophila strains .......................................................................................................... 19 2.1.4.1 GAL4 lines .................................................................................................................. 19 2.1.4.2 Mutant and Transgenic lines ....................................................................................... 20 2.1.4.3 Balancer Chromosomes ............................................................................................... 21 2.1.4.4 Lines generated in the course of this project ............................................................... 21 2.1.4.4.1 Mating scheme type 1 ............................................................................................... 21 vi 2.1.4.4.3 Mating scheme type 2 ............................................................................................... 22 2.1.4.4.4 Mating scheme type 3, ‘clean up’ crosses. ............................................................... 23 2.1.5 Media and Buffers .......................................................................................................... 23 2.1.5.1 Bacteria Media ............................................................................................................. 23 2.1.5.2 Buffers and Standard Solutions ................................................................................... 23 2.1.5.3 Drosophila culture medium. ........................................................................................ 24 2.2 METHODS ........................................................................................................................ 24 2.2.1 Drosophila culture and genetics ....................................................................................
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • University of Groningen the Human HSP70/HSP40 Chaperone Family
    University of Groningen The human HSP70/HSP40 chaperone family Hageman, Jurre IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hageman, J. (2008). The human HSP70/HSP40 chaperone family: a study on its capacity to combat proteotoxic stress. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 CHAPTER 1 Introduction - Structural and functional diversities between members of the human HSPH, HSPA and DNAJ chaperone families Jurre Hageman and Harm H.
    [Show full text]
  • Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson’S Disease and Huntington’S Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease TESI DOCTORAL 2018 Programa de Doctorat en Neurociències Institut de Neurociències Tesi realitzada al laboratori de Malalties Neurodegeenratives de l’Institut de Recerca de la Vall d’Hebron (VHIR) Doctorand Director Tutor Sandra Franco Iborra Miquel Vila Bover José Rodríguez Álvarez Co-directora Co-directora Celine Perier Marta Martínez Vicente i AGRAÏMENTS En primer lloc vull agraïr al Miquel Vila per l’oportunitat que em va donar de començar a fer la tesi doctoral al seu lab. Gràcies per tenir sempre la porta oberta del teu despatx, per la confiança dipositada en mi i per tot el que m’has ensenyat durant tots aquests anys. A més, he tingut la sort de tenir no només un director de tesis sinó tres! Celine muchas gracias por estar siempre ahí, por ensenyarme tu manera de hacer ciencia (que me encanta!) y por ser siempre tan positiva. En mi manera de trabajar hay un poquito de ti y espero ir pasando este conocimiento a los demás porque en todo laboratorio debería ser obligatorio que hubiera alguien como tu.
    [Show full text]
  • At Elevated Temperatures, Heat Shock Protein Genes Show Altered Ratios Of
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 900, 2021 At elevated temperatures, heat shock protein genes show altered ratios of different RNAs and expression of new RNAs, including several novel HSPB1 mRNAs encoding HSP27 protein isoforms XIA GAO1,2, KEYIN ZHANG1,2, HAIYAN ZHOU3, LUCAS ZELLMER4, CHENGFU YUAN5, HAI HUANG6 and DEZHONG JOSHUA LIAO2,6 1Department of Pathology, Guizhou Medical University Hospital; 2Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University; 3Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China; 4Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; 5Department of Biochemistry, China Three Gorges University, Yichang, Hubei 443002; 6Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China Received December 16, 2020; Accepted May 10, 2021 DOI: 10.3892/etm.2021.10332 Abstract. Heat shock proteins (HSP) serve as chaperones genes may engender multiple protein isoforms. These results to maintain the physiological conformation and function of collectively suggested that, besides increasing their expres‑ numerous cellular proteins when the ambient temperature is sion, certain HSP and associated genes also use alternative increased. To determine how accurate the general assumption transcription start sites to produce multiple RNA transcripts that HSP gene expression is increased in febrile situations is, and use alternative splicing of a transcript to produce multiple the RNA levels of the HSF1 (heat shock transcription factor 1) mature RNAs, as important mechanisms for responding to an gene and certain HSP genes were determined in three cell increased ambient temperature in vitro. lines cultured at 37˚C or 39˚C for three days.
    [Show full text]
  • Structure of an Auxilin-Bound Clathrin Coat and Its Implications for The
    letters to nature common drug target27, suggesting that the spindle-associated 24. Chi, N. W. & Lodish, H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate A that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437–38444 (2000). PARPs are potential cancer drug targets. 25. Rouleau, M., Aubin, R. A. & Poirier, G. G. Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci. 117, 815–825 (2004). Methods 26. Pickett-Heaps, J. D., Forer, A. & Spurck, T. Traction fibre: toward a “tensegral” model of the spindle. Cell Motil. Cytoskel. 37, 1–6 (1997). Imaging and antibodies 27. Troll, W., Garte, S. & Frenkel, K. Suppression of tumor promotion by inhibitors of poly(ADP)ribose Cycled Xenopus egg extract spindles were assembled as described12 with or without formation. Basic Life Sci. 52, 225–232 (1990). X-rhodamine-labelled or Alexa-488-labelled tubulin, and isolated through 40% glycerol 28. Tirnauer, J. S., Salmon, E. D. & Mitchison, T. J. Microtubule plus-end dynamics in Xenopus egg extract BRB80. For staining of non-fixed spindles, isolated spindles were processed for spindles. Mol. Biol. Cell 15, 1776–1784 (2004). immunofluorescence in solutions containing 5% glycerol BRB80. For 29. Lin, W., Ame, J. C., Aboul-Ela, N., Jacobson, E. L. & Jacobson, M. K. Isolation and characterization of immunofluorescence and immunoblotting, polyclonal rabbit LP96-10 IgG was purchased the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 272, 11895–11901 from BD Biosciences, polyclonal chicken IgYanti-PAR antibodies from Tulip Biolabs, and (1997). monoclonal 10H from Trevigen. All anti-PAR antibodies were pre-adsorbed against BSA transferred to nitrocellulose.
    [Show full text]
  • This Is the Accepted Version of the Author's Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of Molecular Chapero
    This is the Accepted Version of the Author’s Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders". Molecular Neurobiology. September 2016 DOI: 10.1007/s12035-016-0120-z Link to Publisher: https://link.springer.com/article/10.1007%2Fs12035-016-0120-z Links to Full Text (RedCube, shared via Springer Nature) – View Only http://rdcu.be/kwjE 1 ! Title page Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders Sara D. Reis, Brígida R. Pinho, Jorge M. A. Oliveira* REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal *Corresponding author: Jorge M. Ascenção Oliveira Tel. +351 220428610 Email: [email protected] Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia (FCT): Strategic award UID/QUI/50006/2013, and by the research grant PTDC/NEU-NMC/0412/2014 (PI: JMAO), co- financed by the European Union (FEDER, QREN, COMPETE) – POCI-01-0145-FEDER- 016577. SDR acknowledges FCT for her PhD Grant (PD/BD/113567/2015). BRP acknowledges FCT for her PostDoc Grant (SFRH/BPD/102259/2014). We thank Ana Isabel Duarte (PhD, U. Coimbra) and Maria Clara Quintas (PhD, U. Porto) for reading and commenting the initial manuscript draft. 2 ! Abstract Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration.
    [Show full text]
  • Downloaded the “Top Edge” Version
    bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Antioxidant Enzymes and Heat Shock Protein Genes from Liposcelis Bostrychophila Are Involved in Stress Defense Upon Heat Shock
    insects Article Antioxidant Enzymes and Heat Shock Protein Genes from Liposcelis bostrychophila Are Involved in Stress Defense upon Heat Shock Ze Qing Miao 1,2, Yan Qing Tu 1,2, Peng Yu Guo 1, Wang He 1,2, Tian Xing Jing 1,2, Jin Jun Wang 1,2 and Dan Dan Wei 1,2,* 1 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; [email protected] (Z.Q.M.); [email protected] (Y.Q.T.); [email protected] (P.Y.G.); [email protected] (W.H.); [email protected] (T.X.J.); [email protected] (J.J.W.) 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China * Correspondence: [email protected]; Tel.: +86-23-68250653; Fax: +86-23-68251269 Received: 2 November 2020; Accepted: 26 November 2020; Published: 27 November 2020 Simple Summary: Liposcelis bostrychophila is one of the most serious pests of stored commodities among the psocids. Controlling psocids mainly relies on chemical insecticides and heat stress. In fact, L. bostrychophila has developed high levels of resistance or tolerance to heat treatment in grain storage systems. In this study, we evaluated the changes in malondialdehyde (MDA) concentration after different high temperatures. The result showed that MDA is increased slightly overall, but a drastic increase is detected at 42.5 ◦C for exposure of different times. To further explore the principles of L. bostrychophila in response to heat stress, we tested the changes of superoxide dismutase (SOD), catalase (CAT), peroxidases (POD) and glutathione-S-transferases (GST) activities under different heat treatments and identified four inducible LbHsp70 genes and one LbHsp110 gene.
    [Show full text]