Regulation of Wnt Receptor Activation by the Tumor Suppressor Apc

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Wnt Receptor Activation by the Tumor Suppressor Apc REGULATION OF WNT RECEPTOR ACTIVATION BY THE TUMOR SUPPRESSOR APC By Vicente Kenyi Saito-Diaz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Cell and Developmental Biology May, 2017 Nashville, Tennessee Approved: William Tansey, Ph.D. Andrea Page-McCaw, Ph.D. Jin Chen, M.D., Ph.D. Scott Hiebert, Ph.D. Ethan Lee, M.D., Ph.D. Copyright © 2017 by Vicente Kenyi Saito-Diaz All Rights Reserved ii For my mother. Y para Mollie, por su apoyo incondicional. iii ACKNOWLEDGEMENTS The first person I need to thank is my mentor, Dr. Ethan Lee. His patience, guidance, and support has made this work possible. I will always be amazed by his passion for science and his ability to think outside the box. Despite the inherent difficulties of the scientific endeavors, he is always excited about his work. I hope I can follow his example and share the excitement of science wherever I go. If I can call myself a scientist today, it is mainly because of him. Also, I would like to thank my committee members, Bill Tansey, Jin Chen, Andrea Page-McCaw, and Scott Hiebert. Your guidance and insight helped me realize of my true potential. It is thanks to your support and patience that I am writing these words today. I want to give special thanks to my chairman, Bill. I am very thankful for your wise words and your confidence in me. I would like to thank my lab mates, former and current. They always helped me, gave me words of advice, and kept me sane throughout this years. Specially, I want to thank Dr. Curtis Thorne. Although we overlapped for a short period of time, he introduced me to the awesomeness of the Lee lab and gave me one of the best pieces of advice I received during graduate school. I would like to thank Leah and Aja who played pivotal roles in this work. I would also want to thank to Dr. Laura Lee and her lab. For many years, they were the voice of reason and provided the very needed outside perspective which helped my project at many levels. There is a person who played a fundamental role in my life, Dr. Abel Alcazar- Roman. He selected me to participate in a little experiment called Research Experience iv for Peruvian Undergraduates. His decision changed my life. I am honored to have met such a generous person. His energy and desire to change our home country, Peru, rubbed on me and allowed me to grow and do things I would never knew I could. I consider him a friend and a brother. I would like to thank Dr. Jose Luis Aguilar, Anita Arce, Pilar García, and Ivan Lozada. They were my first mentors and guided my first steps as a scientist. I was lucky to have worked with such an amazing group. Also, I would like to thank Dr. Daniela Drummond-Barbosa. She had faith that a Peruvian undergrad with no experience working in developmental biology would be an asset to her lab. I worked in her lab for one summer and the experience showed me a whole new world. It was an incredible experience. I would specially like to thank my parents and my sister whose unconditional support have been invaluable throughout my life. My mother, who like water turning a rock into a sculpture, very patiently shaped me into the person I am today. Although, she is not with me anymore, she is still the driving force that pushes me to become a better person every day. I also want to thank my sister, who supported me during many difficult times of my life, and believes that I will win a Nobel Prize someday. And of course, I want to thank my beautiful wife, Mollie. Every day with you is a fun new adventure and I am thrilled to share many more with you. You take me to places I don’t even dream about. Without you, I would have never run two half-marathons or adopted our puppy, Nelson. You make me a better person. Thank you. v TABLE OF CONTENTS Page DEDICATION .................................................................................................................. iii ACKNOWLEDGEMENTS ............................................................................................... iv LIST OF FIGURES .......................................................................................................... ix LIST OF ABBREVIATIONS ............................................................................................ xi Chapter I. INTRODUCTION TO THE WNT SIGNALING PATHWAY .......................................... 1 Introduction ................................................................................................................. 1 The cell: the basic unit of life ....................................................................................... 1 History of the Wnt pathway ......................................................................................... 2 The current model of the Wnt pathway ....................................................................... 5 Surface receptor activation.......................................................................................... 6 Inhibition of the -catenin destruction complex ......................................................... 18 Activation of a Wnt-specific nuclear transcriptional complex ..................................... 28 The scaffold protein APC .......................................................................................... 32 The interaction between cells and their extracellular environment ............................ 35 Regulation of the Wnt pathway by endocytosis ......................................................... 43 II. MATERIALS AND METHODS .................................................................................. 47 Cell lines.................................................................................................................... 47 Drosophila RNAi lines, Gal4 driver, and progenitor cell reporter ............................... 47 Transfections ............................................................................................................. 48 Immunoblots and immunoprecipitation ...................................................................... 48 Generation of the mAb7E5 antibody ......................................................................... 49 Generation of RKO APCKO ........................................................................................ 49 Generation of stable cell lines ................................................................................... 50 Sucrose density gradients ......................................................................................... 50 Endocytosis assays ................................................................................................... 51 Microscopy ................................................................................................................ 51 Live cell imaging ........................................................................................................ 52 Line scan analysis ..................................................................................................... 53 Drosophila RNAi experiments ................................................................................... 53 vi Drosophila immunohistochemistry ............................................................................ 54 Auxin-dependent degradation assay ......................................................................... 55 Reporter assay .......................................................................................................... 55 RNA isolation and qRT-PCR ..................................................................................... 56 Statistical analysis ..................................................................................................... 56 Colocalization analysis .............................................................................................. 57 III.INHIBITION OF THE WNT PATHWAY BY A MONOCLONAL ANTIBODY AGAINST THE CO-RECEPTOR LRP6 .......................................................................................... 58 Introduction ............................................................................................................... 58 Results ...................................................................................................................... 59 Development of an antibody that inhibits LRP6 ......................................................... 59 mAb7E5 inhibits ligand-mediated Wnt activation ...................................................... 60 mAb7E5 binds specifically to LRP6 ........................................................................... 61 mAb7E5 inhibits Wnt signaling in breast cancer cells ............................................... 69 Discussion ................................................................................................................. 72 IV. APC INHIBITS LIGAND-INDEPENDENT WNT SIGNALING BY THE CLATHRIN ENDOCYTIC PATHWAY .............................................................................................. 75 Introduction ............................................................................................................... 75 Results ...................................................................................................................... 76 LRP6 is required for Wnt pathway activation in APC mutant cells but not in cells with mutant -catenin ......................................................................................................
Recommended publications
  • Wnt Signaling in Vertebrate Neural Development and Function
    J Neuroimmune Pharmacol (2012) 7:774–787 DOI 10.1007/s11481-012-9404-x INVITED REVIEW Wnt Signaling in Vertebrate Neural Development and Function Kimberly A. Mulligan & Benjamin N. R. Cheyette Received: 18 June 2012 /Accepted: 10 September 2012 /Published online: 27 September 2012 # Springer Science+Business Media, LLC 2012 Abstract Members of the Wnt family of secreted signaling immature neurons migrate to populate different cortical proteins influence many aspects of neural development and layers, nuclei, and ganglia in the forebrain, midbrain, hind- function. Wnts are required from neural induction and axis brain, and spinal cord. Each mature neuron elaborates an formation to axon guidance and synapse development, and axon and numerous dendrites while forming hundreds to even help modulate synapse activity. Wnt proteins activate a thousands of synapses with other neurons, enabling electro- variety of downstream signaling pathways and can induce a chemical communication throughout the nervous system. similar variety of cellular responses, including gene tran- All these developmental processes must be coordinated to scription changes and cytoskeletal rearrangements. This re- ensure proper construction and function of the CNS, and view provides an introduction to Wnt signaling pathways this requires the coordinated developmental activity of a and discusses current research on their roles in vertebrate vast array of genes. neural development and function. Members of the Wnt family of secreted signaling proteins are implicated in every step of neural development men- Keywords Wnt signaling . Neural development . tioned above. Wnt proteins provide positional information CNS patterning . Axon guidance . Dendrite growth . within the embryo for anterior-posterior axis specification of Synapse formation .
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • University of Groningen the Human HSP70/HSP40 Chaperone Family
    University of Groningen The human HSP70/HSP40 chaperone family Hageman, Jurre IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hageman, J. (2008). The human HSP70/HSP40 chaperone family: a study on its capacity to combat proteotoxic stress. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 CHAPTER 1 Introduction - Structural and functional diversities between members of the human HSPH, HSPA and DNAJ chaperone families Jurre Hageman and Harm H.
    [Show full text]
  • DIXDC1 Contributes to Psychiatric Susceptibility by Regulating Dendritic Spine and Glutamatergic Synapse Density Via GSK3 and Wnt/Β-Catenin Signaling
    DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Martin, P., R. E. Stanley, A. P. Ross, A. E. Freitas, C. E. Moyer, A. C. Brumback, J. Iafrati, et al. 2016. “DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling.” Molecular psychiatry :10.1038/mp.2016.184. doi:10.1038/mp.2016.184. http:// dx.doi.org/10.1038/mp.2016.184. Published Version doi:10.1038/mp.2016.184 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32630523 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mol Psychiatry Manuscript Author . Author Manuscript Author manuscript; available in PMC 2017 April 19. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling Pierre-Marie Martin#1, Robert E. Stanley#1,2, Adam P. Ross#1, Andiara E. Freitas#1, Caitlin E. Moyer3, Audrey C. Brumback1,4, Jillian Iafrati1, Kristina S. Stapornwongkul1, Sky Dominguez1, Saul Kivimäe1, Kimberly A. Mulligan1,5, Mehdi Pirooznia6, W. Richard McCombie7, James B. Potash8, Peter P. Zandi9, Shaun M.
    [Show full text]
  • Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson’S Disease and Huntington’S Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease TESI DOCTORAL 2018 Programa de Doctorat en Neurociències Institut de Neurociències Tesi realitzada al laboratori de Malalties Neurodegeenratives de l’Institut de Recerca de la Vall d’Hebron (VHIR) Doctorand Director Tutor Sandra Franco Iborra Miquel Vila Bover José Rodríguez Álvarez Co-directora Co-directora Celine Perier Marta Martínez Vicente i AGRAÏMENTS En primer lloc vull agraïr al Miquel Vila per l’oportunitat que em va donar de començar a fer la tesi doctoral al seu lab. Gràcies per tenir sempre la porta oberta del teu despatx, per la confiança dipositada en mi i per tot el que m’has ensenyat durant tots aquests anys. A més, he tingut la sort de tenir no només un director de tesis sinó tres! Celine muchas gracias por estar siempre ahí, por ensenyarme tu manera de hacer ciencia (que me encanta!) y por ser siempre tan positiva. En mi manera de trabajar hay un poquito de ti y espero ir pasando este conocimiento a los demás porque en todo laboratorio debería ser obligatorio que hubiera alguien como tu.
    [Show full text]
  • PIP3-Phldb2 Is Crucial for LTP Regulating Synaptic NMDA and AMPA Receptor Density and PSD95 Turnover
    国立大学法人電気通信大学 / The University of Electro-Communications PIP3-Phldb2 is crucial for LTP regulating synaptic NMDA and AMPA receptor density and PSD95 turnover 著者(英) Min-Jue Xie, Yasuyuki Ishikawa, Hideshi Yagi, Tokuichi Iguchi, Yuichiro Oka, Kazuki Kuroda, Keiko Iwata, Hiroshi Kiyonari, Shinji Matsuda, Hideo Matsuzaki, Michisuke Yuzaki, Yugo Fukazawa, Makoto Sato journal or Scientific Reports publication title volume 9 number 1 page range 4305 year 2019-03-13 URL http://id.nii.ac.jp/1438/00009269/ doi: 10.1038/s41598-019-40838-6 Creative Commons Attribution 4.0 International License www.nature.com/scientificreports OPEN PIP3-Phldb2 is crucial for LTP regulating synaptic NMDA and AMPA receptor density and PSD95 Received: 1 November 2018 Accepted: 11 February 2019 turnover Published: xx xx xxxx Min-Jue Xie1,2,3,4,5, Yasuyuki Ishikawa6,7, Hideshi Yagi1,8, Tokuichi Iguchi1,9, Yuichiro Oka1,5,9, Kazuki Kuroda1,2,4, Keiko Iwata3,4,5, Hiroshi Kiyonari10, Shinji Matsuda11,12,13, Hideo Matsuzaki3,5, Michisuke Yuzaki 11, Yugo Fukazawa 2,3,4 & Makoto Sato 1,3,5,9 The essential involvement of phosphoinositides in synaptic plasticity is well-established, but incomplete knowledge of the downstream molecular entities prevents us from understanding their signalling cascades completely. Here, we determined that Phldb2, of which pleckstrin-homology domain is highly sensitive to PIP3, functions as a phosphoinositide-signalling mediator for synaptic plasticity. BDNF application caused Phldb2 recruitment toward postsynaptic membrane in dendritic spines, whereas PI3K inhibition resulted in its reduced accumulation. Phldb2 bound to postsynaptic scafolding molecule PSD-95 and was crucial for localization and turnover of PSD-95 in the spine.
    [Show full text]
  • The Molecular Design of Visual Transduction
    The Molecular Design of Visual Transduction Tomoki Isayama1, Anita L. Zimmerman2, Clint L. Makino1 1Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114; 2Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912 Our daily lives are so resplendent with activities that include or require vision, that it is easy to overlook the complexity of the underlying processes involved. Here we describe the first step in vision…detection of light by our photoreceptors. This input stage sets limits on what we can and cannot see. The goal of this resource page is to impart a better understanding of the molecular design behind visual transduction. Structure and Function of Rods and Cones The photoreceptors are located in the deepest layer of the retina (Fig.1), farthest from the incoming light. There are two kinds, rods and cones, so named for their overall shapes. Rods operate in very low light, such as at night. Cones operate under brighter conditions and provide the basic units for color vision. The recently discovered intrinsically photoreceptive ganglion cells will be excluded from this review because while they respond to light, they have not been shown to contribute to image-forming vision. Rods and cones are specialized unipolar neurons. All vertebrate visual receptors follow a simple blueprint. They can be divided into two portions, termed inner and outer segments, according to their radial position within the retina (Fig.1B). The inner segment consists of the cell body and contains the cellular organelles found in other neurons, including a synaptic terminal.
    [Show full text]
  • TBX3 Acts As Tissue-Specific Component of the Wnt/Β
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TBX3 acts as tissue-specific component of the Wnt/b-catenin enhanceosome Dario Zimmerli1,6#, Costanza Borrelli2#, Amaia Jauregi-Miguel3,4#, Simon Söderholm3,4, Salome Brütsch1, Nikolaos Doumpas1, Jan Reichmuth1, Fabienne Murphy-Seiler5, Michel Aguet5, Konrad Basler1*, Andreas E. Moor2*, Claudio Cantù3,4* 1 Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland, CH-8057 2 Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland, CH-8057 3 Wallenberg Centre for Molecular Medicine, Linköping University 4 Department of Biomedical and Clinical Sciences, Faculty of Health Science, SE-581 83 Linköping, Sweden 5Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, CH-1015 Lausanne, Switzerland 6 Current address: Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands # These authors contributed equally to this work * For correspondence: [email protected] [email protected] [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
    [Show full text]
  • Structure of an Auxilin-Bound Clathrin Coat and Its Implications for The
    letters to nature common drug target27, suggesting that the spindle-associated 24. Chi, N. W. & Lodish, H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate A that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437–38444 (2000). PARPs are potential cancer drug targets. 25. Rouleau, M., Aubin, R. A. & Poirier, G. G. Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci. 117, 815–825 (2004). Methods 26. Pickett-Heaps, J. D., Forer, A. & Spurck, T. Traction fibre: toward a “tensegral” model of the spindle. Cell Motil. Cytoskel. 37, 1–6 (1997). Imaging and antibodies 27. Troll, W., Garte, S. & Frenkel, K. Suppression of tumor promotion by inhibitors of poly(ADP)ribose Cycled Xenopus egg extract spindles were assembled as described12 with or without formation. Basic Life Sci. 52, 225–232 (1990). X-rhodamine-labelled or Alexa-488-labelled tubulin, and isolated through 40% glycerol 28. Tirnauer, J. S., Salmon, E. D. & Mitchison, T. J. Microtubule plus-end dynamics in Xenopus egg extract BRB80. For staining of non-fixed spindles, isolated spindles were processed for spindles. Mol. Biol. Cell 15, 1776–1784 (2004). immunofluorescence in solutions containing 5% glycerol BRB80. For 29. Lin, W., Ame, J. C., Aboul-Ela, N., Jacobson, E. L. & Jacobson, M. K. Isolation and characterization of immunofluorescence and immunoblotting, polyclonal rabbit LP96-10 IgG was purchased the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 272, 11895–11901 from BD Biosciences, polyclonal chicken IgYanti-PAR antibodies from Tulip Biolabs, and (1997). monoclonal 10H from Trevigen. All anti-PAR antibodies were pre-adsorbed against BSA transferred to nitrocellulose.
    [Show full text]
  • Dominant Role of Tyrosine 394 Phosphorylation in Kinase Activity
    MOLECULAR AND CELLULAR BIOLOGY, Sept. 1996, p. 4996–5003 Vol. 16, No. 9 0270-7306/96/$04.0010 Copyright q 1996, American Society for Microbiology Mutational Analysis of Lck in CD45-Negative T Cells: Dominant Role of Tyrosine 394 Phosphorylation in Kinase Activity 1 2 2 1 UGO D’ORO, KAZUYASU SAKAGUCHI, ETTORE APPELLA, AND JONATHAN D. ASHWELL * Laboratory of Immune Cell Biology1 and Laboratory of Cell Biology,2 National Cancer Institute, Bethesda, Maryland 20892 Received 29 November 1995/Returned for modification 30 January 1996/Accepted 18 June 1996 The CD45 tyrosine phosphatase has been reported to activate the src family tyrosine kinases Lck and Fyn by dephosphorylating regulatory COOH-terminal tyrosine residues 505 and 528, respectively. However, recent studies with CD452 T-cell lines have found that despite the fact that Lck and Fyn were constitutively hyperphosphorylated, the tyrosine kinase activity of both enzymes was actually increased. In the present study, phosphoamino acid analysis revealed that the increased phosphorylation of Lck in CD452 YAC-1 T cells was restricted to tyrosine residues. To understand the relationship between tyrosine phosphorylation and Lck kinase activity, CD452 YAC-1 cells were transfected with forms of Lck in which tyrosines whose phosphory- lation is thought to regulate enzyme activity (Tyr-192, Tyr-394, Tyr-505, or both Tyr-394 and Tyr-505) were replaced with phenylalanine. While the Y-to-F mutation at position 192 (192-Y3F) had little effect, the 505-Y3F mutation increased enzymatic activity. In contrast, the 394-Y3F mutation decreased the kinase activity to very low levels, an effect that the double mutation, 394-Y3F and 505Y3F, could not reverse.
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]