Synthesis of Tubular, Belt-Like and Möbius Aromatics
Total Page:16
File Type:pdf, Size:1020Kb
Synthesis of Tubular, Belt‐like and Möbius Aromatics Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo‐Wilhelmina Zu Braunschweig Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation Von Dariush Ajami Aus Teheran 1. Referent: Prof. Dr. Rainer Herges 2. Referent: Prof. Dr. Henning Hopf eingereicht am: 17. October 2003 Mündliche Prüfung (Disputation) am: 07. November 2003 To my parents and Mina Danksagung Mein besonderer Dank für die sehr angenehme und konstruktive Atmosphäre gilt meinem Doktorvater Prof. Dr. Rainer Herges. Er hat mich während der gesamten Arbeit stets mit Interesse, Anregungen und einem immer offenen Ohr unterstützt. Meinen Arbeitskreiskollegen Dr. Torsten Winkler, Dr. Markus Diechmann, Felix Köhler, Dr. Anke Krüger, Regina Meinlschmeit, Birtta Harbaum, Kirsten Hess, Katrin Schluze, Dietmund Peters, Monika Bayerhuber, Jan Clausen, Jörg Taubitz gebührt mein Dank für die sehr freundschaftliche Zusammenarbeit. Beim technischen Personal in Braunschweig und Kiel möchte ich mich für die Bereitstellung der Chemikalien, die Herstellung von Glasgeräten und die Messung zahlreicher Spektren bedanken. 1. Introduction...................................................................................................................... 1 1.1. History of Aromaticity............................................................................................ 1 1.2. Spherical Aromatic Compounds........................................................................... 3 1.3 Tubular and Belt-like Aromatic Compounds...................................................... 4 1.3.1 Nanotubes......................................................................................................... 4 1.3.1.1 Straight nanotubes........................................................................................... 5 1.3.1.2 Helix-shaped and Hemitoroidal nanotube.................................................. 6 1.3.2 Cyclacenes, Beltenes and Collarenes............................................................ 8 1.3.3 Picotubes........................................................................................................... 8 1.3.4 Cylic [n]paraphenylacetylenes ...................................................................... 9 1.3.5 Bowl-shaped Benzoannulenes..................................................................... 10 1.4 Our approach ......................................................................................................... 10 2 9,9’,10,10’-Tetradehydrodianthracene (TDDA) as the building block of picotubes syntheses................................................................................................................................. 15 2.1 Synthesis of TDDA................................................................................................ 15 2.1.1 Greene’s synthesis of TDDA........................................................................ 15 2.1.2 Neumann’s improvement of the TDDA synthesis................................... 16 2.1.3 Synthesis of o-mesitylensulfonylhydroxylamine (Carpino’s reagent) .. 16 2.2. Characterization .................................................................................................... 17 2.3 Reactivity ................................................................................................................ 19 2.3.1 Electrophilic addition to TDDA .................................................................. 19 2.3.2 Nucleophilic addition to TDDA.................................................................. 19 2.3.3 Diels-Alder reaction of TDDA..................................................................... 20 2.3.3.1 Diels-Alder reaction with electron-rich dienes ......................................... 20 2.3.3.2 Diels-Alder reaction with electron-poor dienes........................................ 21 2.3.4 Photochemically induced metathesis reactions of TDDA....................... 22 2.3.4.1 Photochemical reaction with cycloalkenes ................................................ 22 2.3.4.2 Photodimerization of TDDA ....................................................................... 22 2.3.4.3 Synthesis of Kammermeierphane ............................................................... 23 2.4. Conclusion:............................................................................................................. 24 3 9,9’,9’’,10,10’,10’’-Hexadehydrotrianthracene (Trimer) ........................................... 25 3.1 General.................................................................................................................... 25 3.2 Synthesis strategy.................................................................................................. 26 3.3 Synthesis of the semitrimer.................................................................................. 33 3.4 Complexation properties of the semitrimer ...................................................... 38 3.5 Epoxidation of semitrimer ................................................................................... 40 3.6 Attempted synthesis of Trimer from Semitrimer ............................................. 41 3.7 Attempted photochemically induced metathesis reactions of the semitrimer 43 3.8 Conclusion;............................................................................................................. 43 4 Photochemically induced metathesis reaction of the tetramer............................... 45 4.1 Improvement of the tetramer synthesis ............................................................. 46 4.3 Photochemically induced metathesis reaction of the tetramer....................... 53 4.2 Photoreaction of tetramer in micellar solution ................................................. 55 4.3 Irradiation of the tetramer in aliphatic solvents ............................................... 57 4.4 Solid phase irradiation of the tetramer .............................................................. 57 4.5 Calculated structures of the hexamer and the octamer ................................... 62 4.7 Conclusion.............................................................................................................. 65 5 Möbius Aromatic compounds..................................................................................... 67 5.1 General.................................................................................................................... 67 5.2 Möbius topologies in chemistry.......................................................................... 68 5.2.1 Möbius-type conjugation in annulenes...................................................... 68 5.2.2 Application of the Hückel-Möbius concept in organic chemistry ......... 69 5.2.3 Theoretically calculated Möbius annulenes .............................................. 71 5.2.4 A double-stranded Möbius strip of carbon and oxygen atoms.............. 75 5.2.5 Möbius strip of a single crystal.................................................................... 75 5.3 Synthesis of Möbius aromatic compound ......................................................... 76 5.3.1 Proposed strategy for synthesizing Möbius aromatic compounds ....... 77 5.3.2 Photochemically induced metathesis reactions of TDDA and cyclooctatetraene ........................................................................................................... 79 5.3.3 Synthesis of cis- or trans-tricyclooctadiene ................................................ 82 5.3.4 Photochemically induced metathesis reactions of TDDA with cis- tricyclooctadiene............................................................................................................ 83 5.3.4.1 Photochemically induced metathesis reactions with using high pressure mercury lamp................................................................................................................. 83 5.3.4.2 Photochemically induced metathesis reactions using a low-pressure mercury lamp................................................................................................................. 90 5.3.5 Quantitative Measures of Aromaticity....................................................... 99 5.3.5.1 Calculated energy of isomers ...................................................................... 99 5.3.5.2 Harmonic oscillator model of aromaticity (HOMA).............................. 102 5.3.5.3 Nucleus independent chemical shift (NICS)........................................... 104 5.3.5.4 Magnetic susceptibility............................................................................... 104 5.3.5.5 Anisotropy of current induced density.................................................... 104 5.3.5.6 UV absorption spectra ................................................................................ 107 5.4 Conclusion........................................................................................................ 108 6 Summary....................................................................................................................... 109 7 Experimental part........................................................................................................ 115 7.1 Apparatus............................................................................................................. 115 7.2 Common procedure ...........................................................................................