Amphiphilic Fullerenes for Biomedical and Optoelectronical Applications”

Total Page:16

File Type:pdf, Size:1020Kb

Amphiphilic Fullerenes for Biomedical and Optoelectronical Applications” AMPHIPHILIC FULLERENES FOR BIOMEDICAL AND OPTOELECTRONICAL APPLICATIONS Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Patrick Witte aus Nürnberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 25.04.2008 Vorsitzender der Prüfungskommission: Prof. Dr. Eberhard Bänsch Erstberichterstatter: Prof. Dr. Andreas Hirsch Zweitberichterstatter: Prof. Dr. Tim Clark Meinem Doktorvater, Prof. Dr. A. Hirsch, gilt mein besonderer Dank für sein reges Interesse am Fortgang dieser Arbeit sowie für seine Anregungen und die Diskussionen mit ihm. Die vorliegende Arbeit wurde in der Zeit zwischen Dezember 2003 bis Dezember 2007 am Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen- Nürnberg durchgeführt. Dedication FormyParentsandKati -Scienceisfacts; justashousesaremadeofstones,soissciencemadeoffacts; butapileofstonesisnotahouseandacollectionoffactsisnotnecessarilyscience HenriPoincare(1854-1912) Index of Abbreviations t Bu ................. tert-Butyl BAM . Brewster Angle Microscopy Boc ................ tert-Butoxycarbonyl CV ................. Cyclic Voltammetry DBU . 1,8-Diaza-bicyclo[5.4.0]undecen-7-en DCE . 1,2-Dichloroethane DCU ............... Dicyclohexylurea DMA . 9,10-Dimethylanthracene DMAP . 4-Dimethylaminopyridine DMSO . Dimethyl Sulfoxide dpf . Days Post Fertilization EA . Elemental Analysis EDC . 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride eq . Equivalent FAB . Fast Atom Bombardment FC . Flash Column Chromatography HOBt . 1-Hydroxybenzotriazole hpf . Hours Post Fertilization HPLC . High Performance Liquid Chromatography IPR . Isolated Pentagon Rule IR .................. Infrared Spectroscopy LB . Langmuir-Blodgett I MW . Molecular Weight NBA . 3-Nitrobenzylalcohol NMR . Nuclear Magnetic Resonance PBS . Phosphate Buffered Saline PCBM . [6,6]-Phenyl-C61 Butyric Acid Methyl Ester pf .................. Post Fertilization ppm . Parts per Million ROS ............... Reactive Oxygen Species RT . Room Temperature STM . Scanning Tunneling Microscopy SWCNT . Single Walled Carbon Nanotube TFA . Trifluoroacetic Acid THF . Tetrahydrofuran TLC . Thin Layer Chromatography UV/Vis . Ultraviolet-Visible Spectroscopy XPS . X-ray Photoelectron Spectroscopy II Table of Contents 1 Introduction 1 1.1 NanostructuredMaterials . 1 1.2 TheDiscoveryofFullerenes. 4 1.3 TheStructureofFullerenes . 5 1.4 PhysicalProperties.. .. .. .. .. .. .. .. .. .. .. .. .. .. 7 1.4.1 Thermodynamic and Kinetic Stability of C60 ............ 7 1.4.2 Solubility of C60 ............................ 7 1.5 SpectroscopicProperties . 9 1.5.1 UV/Vis-Spectroscopy . 9 1.5.2 MassSpectroscopy . .. .. .. .. .. .. .. .. .. .. .. 10 1.5.3 NMRSpectroscopy ......................... 11 1.5.3.1 3He and 1HSpectroscopy. 11 1.5.3.2 13CSpectroscopy ..................... 13 1.6 Electronic Structure and Reactivity of Fullerenes . ......... 14 1.7 Spherical Aromaticity of C60 ......................... 15 1.8 Chemistry of C60 ............................... 16 2 Proposal 20 3 Results and Discussion 22 3.1 Water-soluble Amphiphilic Fullerene-Monoadducts . ......... 22 3.1.1 Synthesis of Anionic Amphiphilic Monoadducts . 24 III Table of Contents 3.1.2 Synthesis of an Anionic Amphiphilic Monoadduct Carrying an UnsaturatedFattyAcid. 33 3.1.3 Synthesis of a Cationic Amphiphilic Monoadduct . 39 3.1.4 Amphiphilic Fullerenes as Potential Drug Candidates ....... 44 3.1.4.1 Introduction and Background . 44 3.1.4.2 Antioxidant Activity . 47 3.1.4.3 Cytochrome C Binding . 52 3.1.4.4 In vivo Studies of the Amphiphilic Fullerenes using Ze- brafish (Danio Rerio) Embryos as Model System . 57 3.1.5 Mechanistic Aspects of the Reaction of Fullerenes with Superoxide 69 3.1.5.1 Cyclic Voltammetry Measurements of Amphiphilic Mono- adducts........................... 70 3.1.5.2 Kinetic Measurements of Amphiphilic Monoadducts . 73 3.1.6 Amphiphilic Fullerenes in Material Science Applications . 77 3.1.6.1 Formation of LANGMUIR-Films with Amphiphilic Fullerene- Monoadducts........................ 79 3.1.6.2 Incorporation of the Amphiphilic Fullerene-Monoadducts in Organic Solar Cell Devices . 85 3.2 Triazole Dendrimers Based Fullerenes via "Click Chemistry" . 89 3.2.1 Synthesis of Novel Dendritic Triazol-Fullerenes . ....... 92 3.3 Synthesis of Novel Fullerene-SWCNT Hybrids . 102 3.3.1 Covalent Sidewall Functionalization of SWCNT’s with a Fullerene- Monocarboxylic Acid Derivative . 103 3.3.2 Non-Covalent Functionalization of SWCNT’s with a Fullerene- PyreneDyad ............................. 106 3.4 Supramolecular Approach for the Formation of C60-Bisadducts . 116 3.4.1 Metallomacrocycles as Tethers for Regioselective Cyclopropana- tion .................................. 117 3.4.2 Hydrogen-bonded Dimers as Tethers for Regioselective Cyclo- propanation.............................. 120 IV Table of Contents 3.5 Synthesis of Novel Multiple Fullerene Arrays Consisting of Mixed C60- HexakisadductUnits . 125 3.5.1 Synthesis of Bisfunctionalized Janus-Type Fullerene-Dimers . 127 3.5.2 Synthesis of a Fullerene-Rich Nanocluster . 137 4 Summary 142 4 Zusammenfassung 146 5 Experimental Part 151 5.1 ChemicalsandInstrumentation . 151 5.2 Synthetic Procedures and Spectroscopic Data . 154 Appendices 224 A Materials and Methods for the Determination of Biological Activity in vivo 224 B Materials and Methods for the Preparation and Examination of SWCNT- Fullerene-Hybrid ............................... 229 References 231 V CHAPTER 1 1 Introduction 1.1 Nanostructured Materials Although the idea of carrying on manipulations at smaller and smaller scales has been around for quite some time the birth of nanotechnology, at least on an ideological level, is usually traced back to a speech by RICHARD FEYNMAN at the December 1959 meet- ing of the American Physical Society. In his speech, he challenged his fellow scientists to find ways by which to create manufacturing, storage, and retrieval systems that are as efficient as DNA and to contain such systems in a submicroscopic, self-contained unit with the size of a cell. It would be over two decades before the first recognized paper on molecular nanotechnology was published.[1] The challenge in nanoscience is to understand how materials behave when sample sizes are close to atomic dimensions. Figure 1.1 for example shows an overview of artificial nanostructures, being of the same size as biological entities, which allows them to interact with biomolecules on the surface of the cell and inside it. When the characteristic length scale of the structure is in the 1- 100 nm range, it becomes com- parable with the critical length scales of physical phenomena, resulting in the so-called "size and shape effects". This leads to unique properties and the opportunity to use 1 Chapter 1 Introduction Figure 1.1: Artificial (top) and biological (bottom) nanostructures. such nanostructured materials in novel applications and devices. Phenomena occur- ring on this length scale are of interest to chemists, physicists, biologists, electrical and mechanical engineers, and computer scientists, making research in nanotech- nology a frontier activity in materials science. Nanomaterials, which can be classi- fied as carbon-based nanomaterials, nanocomposites, biological nanomaterials, nano- polymers, nano-glasses and nano-ceramics find and promise applications in a wide range of fields such as medicine (therapeutic agent, sensors, labelling), device tech- nology (nanophotonics, solar energy conversion, opto-electronics) and chemical syn- thesis (catalysis). This thesis deals with the design and synthesis of functionalized carbon-based nanomaterials, to get more insight in structure-function relationships and 2 Chapter 1 Introduction to provide a predictive mechanism that will allow chemists to efficiently design nano- materials that perform exactly as desired. 3 Chapter 1 Introduction 1.2 The Discovery of Fullerenes The discovery of C60 has a long and very in- teresting history.[3] The structure of truncated icosahedron was already known about more than 500 years ago. ARCHIMEDES is credited for discovering the structure and LEONARDO DA VINCI included it in one of his drawings. At the end of 1960’s, scientists were increas- ingly interested in non-planar aromatic struc- ture, and thereafter the bowl-shaped corannu- lene was synthesized.[4] In 1970, EIJI OSAWA realized that a molecule made up of sp2 hy- bridized carbons could have a spherical struc- ture. He therefore made the first proposal for [5] C60. Then, a group of Russian scientists in- dependently proposed the C60 structure, the Figure 1.2: Leonardo da Vinci‘s paper published by BOCHVAR and GAL’PERN "Truncated Icosahedron".[2] in 1973 not only predicted some properties of [6] C60, but also of C20 (the smallest fullerene) as well. The first spectroscopic evidence [7] for C60 and other fullerenes was published in 1984 by ROHLFING and coworkers. Eventually in 1985 ROBERT CURL and RICHARD SMALLEY from Rice University, and HAROLD KROTO from the University of Sussex discovered the fullerenes while doing experiments with a laser-vaporization supersonic cluster beam apparatus developed by SMALLEY. Upon vaporizing graphite from the disk with high-power laser pulses, they found in their data, to their surprise, an indication of what appeared to be a cluster con- sisting of 60 carbon atoms. After furiously debating, building models, and consulting the literature, they theorized
Recommended publications
  • Molecular Clusters of the Main Group Elements
    Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Further Titles of Interest: G. Schmid (Ed.) Nanoparticles From Theory to Application 2003 ISBN 3-527-30507-6 P. Jutzi, U. Schubert (Eds.) Silicon Chemistry From the Atom to Extended Systems 2003 ISBN 3-527-30647-1 P. Braunstein, L. A. Oro, P. R. Raithby (Eds.) Metal Clusters in Chemistry 1999 ISBN 3-527-29549-6 U. Schubert, N. Husing€ Synthesis of Inorganic Materials 2000 ISBN 3-527-29550-X P. Comba, T. W. Hambley Molecular Modeling of Inorganic Compounds 2001 ISBN 3-527-29915-7 Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Prof. Matthias Driess 9 This book was carefully produced. Ruhr-Universita¨t Bochum Nevertheless, authors, editors and publisher Fakulta¨tfu¨r Chemie do not warrant the information contained Lehrstuhl fu¨r Anorganische Chemie I: therein to be free of errors. Readers are Cluster- und Koordinations-Chemie advised to keep in mind that statements, 44780 Bochum data, illustrations, procedural details or Germany other items may inadvertently be inaccurate. Prof. Heinrich No¨th Ludwig-Maximilians-Universita¨tMu¨nchen Library of Congress Card No.: applied for Department Chemie A catalogue record for this book is available Butenandt Str. 5-13 (Haus D) from the British Library. 81377 Munich Bibliographic information published by Die Germany Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http:// dnb.ddb.de ( 2004 WILEY-VCH Verlag GmbH & Co.
    [Show full text]
  • Molecular Modeling 2010
    Research Report by Dr. Kirill Yu. Monakhov – Graduate College 850 “Molecular Modeling 2010 Research Report by Dr. Kirill Yu. Monakhov Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, Fax: +49-6221-546617. Supervisor: Gerald Linti Abstract In the framework of my Ph.D. thesis, the polynuclear bismuth chemistry has been investigated from different perspectives with the main focus on four types of the chemical bonding. Thus, the section of bismuth–bismuth bonding affects redox/metathesis reactions of BiBr3 with bulky lithium silanide Li(thf)3SiPh2tBu in three different ratios, leading to the formation of a Bi–Bi bonded compound, (tBuPh2Si)4Bi2 as one of the reaction products. The · quantum chemical study has been mainly performed to shed light on the processes of oligomerisation of R2Bi radicals and bismuth dimers. That is a major challenge in the context of ''thermochromicity'' and ''closed-shell interactions'' in inorganic chemistry of organobismuth compounds with homonuclear Bi–Bi bonds. The section of bismuth–transition-metal bonding gives a deep insight into the structures, the chemical bonding and the 4– electronic behavior of heteronuclear bulky Bi–Fe cage-like clusters, cubic [Bi4Fe8(CO)28] and seven-vertex [Bi4Fe3(CO)9], on the experimental and theoretical level. The section of bonding in bismuth–cyclopentadienyl compounds represents a detailed theoretical and experimental study of molecular systems based on 2+ cyclopentadienyl bismuth units such as (C5R5)Bi , [(C5R5)Bi]n and (C5R5)BiX2 (R = H, Me; X = F, Cl, Br, I; n = 1−4) in order to develop an effective adjustment of their electronic and bonding behavior and then, to be able to manipulate highly fluxional Bi–C5R5 bonds.
    [Show full text]
  • Symmetry 2010, 2, 1745-1762; Doi:10.3390/Sym2041745 OPEN ACCESS Symmetry ISSN 2073-8994
    Symmetry 2010, 2, 1745-1762; doi:10.3390/sym2041745 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Review n– Polyanionic Hexagons: X6 (X = Si, Ge) Masae Takahashi Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; E-Mail: [email protected]; Tel.: +81-22-795-4271; Fax: +81-22-795-7810 Received: 16 August 2010; in revised form: 7 September 2010 / Accepted: 27 September 2010 / Published: 30 September 2010 Abstract: The paper reviews the polyanionic hexagons of silicon and germanium, focusing on aromaticity. The chair-like structures of hexasila- and hexagermabenzene are similar to a nonaromatic cyclohexane (CH2)6 and dissimilar to aromatic D6h-symmetric benzene (CH)6, although silicon and germanium are in the same group of the periodic table as carbon. Recently, six-membered silicon and germanium rings with extra electrons instead of conventional substituents, such as alkyl, aryl, etc., were calculated by us to have D6h symmetry and to be aromatic. We summarize here our main findings and the background needed to reach them, and propose a synthetically accessible molecule. Keywords: aromaticity; density-functional-theory calculations; Wade’s rule; Zintl phases; silicon clusters; germanium clusters 1. Introduction This review treats the subject of hexagonal silicon and germanium clusters, paying attention to the two-dimensional aromaticity. The concept of aromaticity is one of the most fascinating problems in chemistry [1,2]. Benzene is the archetypical aromatic hexagon of carbon: it is a planar, cyclic, fully conjugated system that possesses delocalized electrons. The two-dimensional aromaticity of planar monocyclic systems is governed by Hückel’s 4N + 2 rule, where N is the number of electrons.
    [Show full text]
  • A Multicentre-Bonded &Lsqb
    ARTICLE Received 8 May 2014 | Accepted 20 Jan 2015 | Published 23 Feb 2015 DOI: 10.1038/ncomms7331 I A multicentre-bonded [Zn ]8 cluster with cubic aromaticity Ping Cui1,*, Han-Shi Hu2,*, Bin Zhao1, Jeffery T. Miller3, Peng Cheng1 & Jun Li2 Polynuclear zinc clusters [Znx](x42) with multicentred Zn–Zn bonds and þ 1 oxidation state zinc (that is, zinc(I) or ZnI) are to our knowledge unknown in chemistry. Here we report I 12 À the polyzinc compounds with an unusual cubic [Zn 8(HL)4(L)8] (L ¼ tetrazole dianion) I cluster core, composed of zinc(I) ions and short Zn–Zn bonds (2.2713(19) Å). The [Zn 8]- bearing compounds possess surprisingly high stability in air and solution. Quantum chemical 1 I studies reveal that the eight Zn 4s electrons in the [Zn 8] cluster fully occupy four bonding molecular orbitals and leave four antibonding ones entirely empty, leading to an extensive electron delocalization over the cube and significant stabilization. The bonding pattern of the cube represents a class of aromatic system that we refer to as cubic aromaticity, which follows a 6n þ 2 electron counting rule. Our finding extends the aromaticity concept to cubic metallic systems, and enriches Zn–Zn bonding chemistry. 1 Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry of the Ministry of Education, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China. 2 Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.
    [Show full text]
  • First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization
    First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Scharf, Austin Bennett. 2013. First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11169796 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ©2013 – Austin B. Scharf All rights reserved. Dissertation Adviser: Professor Theodore A. Betley Austin B. Scharf First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization Abstract A library of variously-substituted dipyrrins and their first-row transition metal (Mn, Fe, Cu, Zn) complexes have been synthesized, and the effects of peripheral substituents on the spectroscopic, electrochemical, and structural properties of both the free-base dipyrrins and their metal complexes has been explored. The optical and electrochemical properties of the free dipyrrins follow systematic trends; with the introduction of electron-withdrawing substituents in the 2-, 3-, 5-, 7-, and 8-positions of the dipyrrin, bathochromic shifts in the absorption spectra are observed, oxidation becomes more difficult, and reduction becomes more facile. Similar effects are seen for iron(II) dipyrrinato complexes, where peripheral substitution of the dipyrrinato ligand induces red-shifts in the absorption spectra and increases the oxidation potential of the bound iron.
    [Show full text]
  • Experimental and Theoretical Study of the Polynuclear Bismuth Compounds – Dimers, Clusters, Molecular Self-Assemblies and Polyhedral Cage Molecules
    INAUGURAL – DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Kirill Yu. Monakhov (M.Sc.) aus Moskau, Russland Tag der mündlichen Prüfung: 2. Juli 2010 Experimental and Theoretical Study of the Polynuclear Bismuth Compounds – Dimers, Clusters, Molecular Self-Assemblies and Polyhedral Cage Molecules Gutachter: Prof. Dr. Gerald Linti Prof. Dr. Hans-Jörg Himmel Die vorliegende Arbeit wurde in der Zeit von November 2007 bis Mai 2010 am Institut für Anorganische Chemie der Ruprecht-Karls-Universität Heidelberg unter Anleitung von Herrn Prof. Dr. Gerald Linti durchgeführt. Meinen Eltern und Großeltern, meinem Bruder, Mariam und ihrer Mutter Irène gewidmet «Die wahre Wissenschaft und das wahre Studium des Menschen ist der Mensch» Pierre Charron, »Le traité de la sagesse« List of Publications Following topics of this thesis are prepared to be published: 11. Aromaticity of indium and bismuth cluster compounds. G. Linti, K. Yu. Monakhov, M. Bühler, T. Zessin, Graduate College 850 Book 2010, manuscript in preparation. 10. Molecular self-assemblies based on (C5Me5)BiX2 units (X = halogen): synthesis, X-ray crystal structures and quantum chemical study. K. Yu. Monakhov, T. Zessin, G. Linti, manuscript in preparation. 9. Seven-vertex cage cluster Bi4[μ3-Fe(CO)3]3 with π-coordinated aromatic ligands and inverted sandwich behavior in the crystal. K. Yu. Monakhov, T. Zessin, G. Linti, manuscript in preparation. Following topics of this thesis have been published during the doctorate period: 8. Cubane-like bismuth-iron cluster: synthesis, X-ray crystal structure and theoretical 4– characterization of [Bi4Fe8(CO)28] anion. K. Yu. Monakhov, T.
    [Show full text]
  • NBO Applications, 2008
    NBO 2008 (Jan-Dec) - 910 references Compiled by Emily Wixson; Updated by Ariel Neff 4/16/13 Adalsteinsson, H.; Debusschere, B. J.; Long, K. R.; Najm, H. N. Components for atomistic-to-continuum multiscale modeling of flow in micro- and nanofluidic systems Scientific Programming, (16): 297-313 2008. Adcock, W.; Trout, N. A. Diastereofacial selectivity in some 4-substituted (X) 2-adamantyl derivatives: electronic versus steric effects Journal of Physical Organic Chemistry, (21): 68-72 2008. Agapito, F.; Nunes, P. A.; Costa Cabral, B. J.; Borges dos Santos, R. A.; Martinho Simoes, J. A. Energetic differences between the five- and six-membered ring hydrocarbons: Strain energies in the parent and radical molecules Journal of Organic Chemistry, (73): 6213-6223 2008. Aguilar-Castro, L.; Tlahuextl, M.; Mendoza-Huizar, L. H.; Tapia-Benavides, A. R.; Tlahuext, H. Hydrogen bond studies in substituted N-(2-hydroxyphenyl)-2-[(4- methylbenzenesulfonyl)amino]acetamides Arkivoc: 210-226 2008. Alajarin, M.; Cabrera, J.; Pastor, A.; Sanchez-Andrada, P.; Bautista, D. Polar hetero-Diels-alder reactions of 4-alkenylthiazoles with 1,2,4-triazoline-3,5-diones: An experimental and computational study Journal of Organic Chemistry, (73): 963-973 2008. Albertin, G.; Antoniutti, S.; Baldan, D.; Castro, J.; Garcia-Fontan, S. Preparation of benzyl azide complexes of iridium(III) Inorganic Chemistry, (47): 742-748 2008. Alcoba, D. R.; Ona, O. Determination of energies and electronic densities of functional groups according to partitionings in the physical space Journal of Physical Chemistry A, (112): 10023-10028 2008. Alia, J. D.; Vlaisavljevich, B. Prediction of molecular properties including symmetry from quantum-based molecular structural formulas, VIF Journal of Physical Chemistry A, (112): 9784-9795 2008.
    [Show full text]
  • Electronic Structure, Chemical Bonding, and Electronic Delocalization of Organic and Inorganic Systems with Three-Dimensional Or Excited State Aromaticity
    ELECTRONIC STRUCTURE, CHEMICAL BONDING, AND ELECTRONIC DELOCALIZATION OF ORGANIC AND INORGANIC SYSTEMS WITH THREE-DIMENSIONAL OR EXCITED STATE AROMATICITY Ouissam El Bakouri El Farri Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/565444 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art.
    [Show full text]
  • 2/2010 Tom I ANUL LV 2010
    CHEMIA 2/2010 tom I ANUL LV 2010 S T U D I A UNIVERSITATIS BABEŞ-BOLYAI CHEMIA 2 tom I Desktop Editing Office: 51ST B.P. Hasdeu Street, Cluj-Napoca, Romania, Phone + 40 264-405352 CONTENT – SOMMAIRE – INHALT – CUPRINS IOAN SILAGHI-DUMITRESCU 1950-2009.................................................. 5 LIST OF PUBLICATIONS..................................................................... 7 P.M. PETRAR, G. NEMES, L. SILAGHI-DUMITRESCU, A Theoretical Approach on the Structure of Arsaallenes -As=C=C< and Arsaphosphaallenes -As=C=P- ........................................................... 25 A.-L. SEFF, S. PILBÁK, I. SILAGHI-DUMITRESCU, L. POPPE, Zinc- Containing Active Site in a Partially Modified 1GKM Crystal Structure of Histidine Ammonia-Lyase: a Computational Investigation .............. 37 M.V. PUTZ, Chemical Hardness: Quantum Observable? .......................... 47 V. MAXIM, C.-C. CORMOŞ, P.Ş. AGACHI, Mathematical Modeling and Simulation of Coal Co-Gasification with Waste/Biomass in an Entrained- Flow Gasifier........................................................................................ 51 R. SILAGHI-DUMITRESCU, Computational Analysis of Bonding in PhIO and Related ‘Hypervalent’ Iodine Complexes...................................... 63 M. FERBINTEANU, F. CIMPOESU, On the Multiple Facets of Aromaticity: Organic, Inorganic, Organometallic, Coordination and Supramolecular Case Studies ....................................................................................... 69 E.M. MOSOARCA, I. LABADI, L. SAJTI, R. TUDOSE,
    [Show full text]
  • Are Aromatic: a 3D Globally Aromatic Cage Containing Five Types of 2D Aromatic Macrocycles
    All Are Aromatic: A 3D Globally Aromatic Cage Containing Five Types of 2D Aromatic Macrocycles Longbin Ren1, Yi Han1, Xudong Hou1, Yong Ni1 and Jishan Wu1,2* 1Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore 2Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China E-mail: [email protected] Graphical abstract: The studies on three-dimensional (3D) aromaticity have been mainly focused on fullerenes, boron- based deltahedrons/clusters, metal clusters and polyhedral hydrocarbons, but there are very limited researches on the fundamental aromaticity rule for 3D fully π-conjugated molecules. Herein, we report a π-conjugated molecular cage in which two aromatic porphyrin units are bridged by four thiophene- based arms. Two-electron chemical oxidation leads to a 3D globally aromatic cage with a C2 symmetry according to X-ray diffraction, NMR, electronic absorption spectra, and theoretical calculations. 1 | P a g e Detailed magnetic shielding response analysis along different axes reveal that all the possible five types of two-dimensional (2D) macrocycles in the cage skeleton are aromatic and follow Hückel rule. The switch from localized aromaticity to global aromaticity upon chemical oxidation is also observed in a tricyclic model compound. The study indicates that to attain 3D global aromaticity in a molecular cage, all the formally available π-conjugated macrocycles should be 2D aromatic. Aromaticity is initially confined to planar two-dimensional (2D) π-conjugated monocyclic molecules, which follow [4N+2] Hückle rule.1-5 Over the years, studies have demonstrated that this concept is also applicable for diverse structures in which π- and/or σ- electrons can be efficiently delocalized and result in stabilization.
    [Show full text]
  • Synthesis of Tubular, Belt-Like and Möbius Aromatics
    Synthesis of Tubular, Belt‐like and Möbius Aromatics Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo‐Wilhelmina Zu Braunschweig Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation Von Dariush Ajami Aus Teheran 1. Referent: Prof. Dr. Rainer Herges 2. Referent: Prof. Dr. Henning Hopf eingereicht am: 17. October 2003 Mündliche Prüfung (Disputation) am: 07. November 2003 To my parents and Mina Danksagung Mein besonderer Dank für die sehr angenehme und konstruktive Atmosphäre gilt meinem Doktorvater Prof. Dr. Rainer Herges. Er hat mich während der gesamten Arbeit stets mit Interesse, Anregungen und einem immer offenen Ohr unterstützt. Meinen Arbeitskreiskollegen Dr. Torsten Winkler, Dr. Markus Diechmann, Felix Köhler, Dr. Anke Krüger, Regina Meinlschmeit, Birtta Harbaum, Kirsten Hess, Katrin Schluze, Dietmund Peters, Monika Bayerhuber, Jan Clausen, Jörg Taubitz gebührt mein Dank für die sehr freundschaftliche Zusammenarbeit. Beim technischen Personal in Braunschweig und Kiel möchte ich mich für die Bereitstellung der Chemikalien, die Herstellung von Glasgeräten und die Messung zahlreicher Spektren bedanken. 1. Introduction...................................................................................................................... 1 1.1. History of Aromaticity............................................................................................ 1 1.2. Spherical Aromatic Compounds..........................................................................
    [Show full text]
  • Current Organic Chemistry, 2016, 20, 1490-1501
    1490 Send Orders for Reprints to [email protected] Current Organic Chemistry, 2016, 20, 1490-1501 ISSN: 1385-2728 eISSN: 1875-5348 Sugar-Functionalized Fullerenes Impact Factor: 2.157 Shengju Zhou1,3, Piotr Trochimczyk2, Lili Sun2, Sen Hou2,* and Hongguang Li1,* BENTHAM SCIENCE 1Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; 3University of Chinese Academy of Sciences, Beijing 100049, China Abstract: Being the first member in the family of nanocarbon superstructures, fullerene C60 (refers to C60 hereaf- ter) continues to be a research focus in physics, chemistry, materials science, biology and life science. The readily available functionalization methods that can be realized on C60 further expand the potential applications of C60 in various fields. Carbohydrates distribute widely in a variety of forms in mammalian animals and the glycan-protein interactions play important roles in many biological processes. Covalently attaching sugar units to C60 yields glyco- fullerenes, which exhibit interesting physicochemical properties and biological activities. Here, we give a compre- hensive review on the syntheses, properties and applications of this novel class of C60 derivatives. Directions in which efforts should be devoted to in near future have also been discussed. Keywords: Fullerene C60, carbohydrates, glycofullerenes, biological activities, cycloaddition. INTRODUCTION Here, we summarize the studies on sugar-functionalized C60 carried out during the past decades. Although such topics have par- Since its discovery [1] and large-scale production [2], fullerene tially been mentioned in the review papers by Nierengarten et al.
    [Show full text]