Current Organic Chemistry, 2016, 20, 1490-1501

Total Page:16

File Type:pdf, Size:1020Kb

Current Organic Chemistry, 2016, 20, 1490-1501 1490 Send Orders for Reprints to [email protected] Current Organic Chemistry, 2016, 20, 1490-1501 ISSN: 1385-2728 eISSN: 1875-5348 Sugar-Functionalized Fullerenes Impact Factor: 2.157 Shengju Zhou1,3, Piotr Trochimczyk2, Lili Sun2, Sen Hou2,* and Hongguang Li1,* BENTHAM SCIENCE 1Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; 3University of Chinese Academy of Sciences, Beijing 100049, China Abstract: Being the first member in the family of nanocarbon superstructures, fullerene C60 (refers to C60 hereaf- ter) continues to be a research focus in physics, chemistry, materials science, biology and life science. The readily available functionalization methods that can be realized on C60 further expand the potential applications of C60 in various fields. Carbohydrates distribute widely in a variety of forms in mammalian animals and the glycan-protein interactions play important roles in many biological processes. Covalently attaching sugar units to C60 yields glyco- fullerenes, which exhibit interesting physicochemical properties and biological activities. Here, we give a compre- hensive review on the syntheses, properties and applications of this novel class of C60 derivatives. Directions in which efforts should be devoted to in near future have also been discussed. Keywords: Fullerene C60, carbohydrates, glycofullerenes, biological activities, cycloaddition. INTRODUCTION Here, we summarize the studies on sugar-functionalized C60 carried out during the past decades. Although such topics have par- Since its discovery [1] and large-scale production [2], fullerene tially been mentioned in the review papers by Nierengarten et al. C (refers to C hereafter) has received much attention due to its 60 60 and Roy et al., respectively [21, 22], emphases have been put on highly symmetric geometry and unique physicochemical properties. recently developed globular fullerene sugar balls. A comprehensive Its appearance strengthens interests of scientists on cage molecules. review reflecting all the aspects of sugar-functionalized C is still Moreover, it induces the subsequent revolution of nanocarbon ma- 60 needed. In this review, we would like to first give a brief introduc- terials, during which a variety of nanocarbon superstructures with tion of the chemical reactivity of C , followed by a detailed presen- different dimensionalities and properties have been discovered [3]. 60 tation of glycofullerenes organized mainly by the type of reactions These include carbon nanotubes (CNTs), graphene and carbon through which the sugar units are covalently attached. Hopefully quantum dots. this review can serve as a guide for those who are interested on When comprehensive investigations on C60 start in different fullerene chemistry and/or sugar-containing hybrid materials. disciplines, its poor solubility becomes a big obstacle. This is espe- cially true for the studies in aqueous solutions due to the extremely -24 -1 CHEMICAL REACTIVITY OF C60 low solubility of C60 in water, which is only ~2 10 molL [4]. Post-functionalization is thus mandatory before a variety of poten- The discovery of C60 introduces a thoroughly new and intrigu- tial applications, especially its biological activities [5-10], can be ing substrate for organic synthesis. Investigations on its chemical realized. This triggers the interests on the syntheses of water soluble reactivity were initiated soon after its production in gram-scale. C60 derivatives which bear a variety of hydrophilic groups such as Earlier studies indicated that C60 has some aromaticity [23]. How- quaternary ammonium salts [11, 12], carboxylic groups [13-15] and ever, deeper investigations revealed that it is more like an electron- oligo-(ethylene oxide)s [16]. deficient alkene and can accept up to six electrons [24]. C60 also Sugars are important components in mammalian cells. They are acts like a radical sponge and can react with various radicals utmost important due to their biological activities such as glycan- through addition reaction [25]. This occurs easily especially when protein interactions [17-19]. However, such interaction between a C60 is exposed to the light. One of the disadvantages of the radical single sugar unit and protein is normally quite weak and multivalent addition reaction, however, is the formation of a mixture with mul- display is thus required [20]. Aromatic scaffolds have recently been tiple functional groups attached onto C60 in a single reaction, which recognized as ideal candidates for multivalent glycoconjugate syn- makes subsequent purification quite sophisticated or impossible. theses and applications [21], among which sugar-functionalized Recently, this obstacle has been partially solved by applying transi- tion metal-based catalysts, leading to the formation of well-defined C60, i.e., glycofullerenes, received special attention. Grafting sugar C monoadducts [26]. units to C60 can not only impart C60 water solubility to realize its 60 intriguing biological activities, but also give the hybrid the ability The most comprehensively studied and useful reactions on C60 for molecular recognition through glycan-protein interactions. are probably the various cycloadditions. Accordingly to the reaction pathway and the number of atoms involved in the ring which bridges C and the addends, they can be categorized by [1+2], *Address correspondence to these authors at the Institute of Physical Chemistry Polish 60 Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Tel: + 0048 [3+2] and [4+2] cycloadditions, respectively. Typical examples in 790662634; E-mail: [email protected] and Laboratory of Clean Energy Chemis- each case include Bingle-Hirsch reaction [27, 28], Prato reaction try and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sci- [29] and Diels-Alder reaction [30], respectively. To date, glyco- ences, Lanzhou 730000, China; Tel: +86-931-4968829 Fax: +86-931-4968163; E-mail: [email protected] fullerenes have been prepared mainly through these cycloadditions. Current Organic Chemistry 1875-5348/16 $58.00+.00 © 2016 Bentham Science Publishers Sugar-Functionalized Fullerenes Current Organic Chemistry, 2016, Vol. 20, No. 14 1491 Scheme 1. In the following, the presentation will be divided mainly based on was then subjected to react with 1,2:3,4-di-O-isopropylidene-D- the reaction pathway and/or the sugar-based precursors, which will galactopyranose-6-chloroformate to give glycofullerene 6 through then be ended with C60 derivatives functionalized with - amide coupling (Scheme 2) [35]. cyclodextrin (-CD), a cyclic oligosaccharide with seven -D- Besides preparation of glycofullerene through amide coupling glucopyranoside units linked through 1,4-glucosidic bonds. Finally, between acyl chloride-based sugar unit and C60 amine as demon- conclusions will be given together with a brief discussion of per- strated in Scheme 2, a more popular synthetic pathway involves spectives. installing an azide group onto the sugar units which were then di- rectly subjected to react with C60 (Scheme 3). For the monoadducts REACTION WITH DIAZONIUMS obtained this way, theoretically there are four isomers, i.e., 5.6- The first report on glycofullerenes appeared in 1992, i.e., one open, 5,6-close, 6,6-open and 6,6-close. In most reports accom- plished by different authors, however, only one (or two) dominant year after the report on the gram-scale production of C60 [31]. In this work, Vasella et al. prepared O-benzyl (Bn) and O-pivaloylated isomer(s) have been claimed, among which 5.6-open and/or 6,6- (Piv) protected sugar units which bear diazoniums, which were then close are the most popular. It is also claimed that alkyl azides prefer to afford 5,6-addition type glycofullerenes while acyl azides prefer- subjected to react with C60 to give glycofullerene 1 and 2 (Scheme 1). The mechanism involved in the reaction between fullerene and entially give the adducts with 6,6-addition pattern [34-37]. Mean- diazonium will not be repeated here. For details, one can refer to a while, bisadduct can be also obtained where the two addends are recent paper co-authored by Olmstead, Balch, Wudl and Echegoyen joint at the end of the C=C double bond in between two six- et al., which discusses the regioselective synthesis of easily isolable membered rings on C60 (Scheme 3). pure bismethano derivatives of fullerene C60 and C70 with high Kobayashi et al. prepared a series of glycofullerenes in 13-28% steric congestion using 1,3-dibenzoylpropane bis-p-toluenesulfonyl yields by reacting C60 with per-O-acetyl glycosyl azide of D- hydrazone as the addend precursor [32]. The protecting groups on glucopyranose, D-galactopyranose, lactose, maltose, and maltotri- the sugar units were later expanded to 4,6-O-benzylidene (3) and ose, respectively (Scheme 3, 7-11) [38]. The glycofullerenes were 2,3:4,6-di-O-isopropylidene (4), and glycofullerene 5 with unpro- identified to be 5,6-addition type due to the absence of the signals 3 tected sugar unit was also prepared [33]. from sp carbons of C60 which should appear between 80-90 ppm as well as the disappearance of the bands between 420-440 nm in UV- REACTION WITH AZIDES vis absorptions. Even though the addition pattern has been fixed, the authors found by 1H NMR analysis that each of these glyco- The addition of azides to C60 was demonstrated by Prato and fullerenes is a mixture of two steroisomers with a molar ratio of Wudl in 1993 [34]. Utilizing this synthetic route, Taylor et al. re- ~2:1. ported the preparation of an isolable and stable C derivative, az- 60 In another work, Kobayashi and Shinohara et al. prepared gly- iridino[2,3:1,2]C (6a), by thermal elimination of isobutene and 60 cofullerenes carrying mono- and bis--D-mannosyl linkages on the CO from N-tert-butoxycarbonylaziridino[2,3:1,2]C (6b). 6a 2 60 surface via the reaction between 2-azidoethyl -D-mannoside and 1492 Current Organic Chemistry, 2016, Vol.
Recommended publications
  • Molecular Clusters of the Main Group Elements
    Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Further Titles of Interest: G. Schmid (Ed.) Nanoparticles From Theory to Application 2003 ISBN 3-527-30507-6 P. Jutzi, U. Schubert (Eds.) Silicon Chemistry From the Atom to Extended Systems 2003 ISBN 3-527-30647-1 P. Braunstein, L. A. Oro, P. R. Raithby (Eds.) Metal Clusters in Chemistry 1999 ISBN 3-527-29549-6 U. Schubert, N. Husing€ Synthesis of Inorganic Materials 2000 ISBN 3-527-29550-X P. Comba, T. W. Hambley Molecular Modeling of Inorganic Compounds 2001 ISBN 3-527-29915-7 Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Prof. Matthias Driess 9 This book was carefully produced. Ruhr-Universita¨t Bochum Nevertheless, authors, editors and publisher Fakulta¨tfu¨r Chemie do not warrant the information contained Lehrstuhl fu¨r Anorganische Chemie I: therein to be free of errors. Readers are Cluster- und Koordinations-Chemie advised to keep in mind that statements, 44780 Bochum data, illustrations, procedural details or Germany other items may inadvertently be inaccurate. Prof. Heinrich No¨th Ludwig-Maximilians-Universita¨tMu¨nchen Library of Congress Card No.: applied for Department Chemie A catalogue record for this book is available Butenandt Str. 5-13 (Haus D) from the British Library. 81377 Munich Bibliographic information published by Die Germany Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http:// dnb.ddb.de ( 2004 WILEY-VCH Verlag GmbH & Co.
    [Show full text]
  • Competitive Retro-Cycloaddition Reaction in Fullerene Dimers Connected Through Pyrrolidinopyrazolino Rings
    pubs.acs.org/joc Competitive Retro-Cycloaddition Reaction in Fullerene Dimers Connected through Pyrrolidinopyrazolino Rings Juan Luis Delgado,†,‡ Sı´lvia Osuna,§ Pierre-Antoine Bouit,‡ Roberto Martı´nez-Alvarez,† Eva Espı´ldora,† Miquel Sola,* ,§ and Nazario Martı´n*,†,‡ †Departamento de Quı´mica Organica, Facultad de Ciencias Quı´micas, Universidad Complutense de Madrid, E-28040, Madrid, Spain, ‡IMDEA-Nanociencia, Facultad de Ciencias, Modulo C-IX, 3a planta, Ciudad Universitaria de Cantoblanco, E-29049 Madrid, Spain, and §Institut de Quı´mica Computacional and Departament de Quı´mica, Universitat de Girona, E-17071 Girona, Catalonia, Spain [email protected]; [email protected] Received July 31, 2009 Competitive retro-cycloaddition in [60]- and [70]fullerene homodimers (1a,1c) as well as [60]/[70]heterodimer (1b), linked through 2-pyrazolinopyrrolidino bridges, has been studied by means of HPLC, mass spectrometry, and theoretical calculations at the density functional theory (DFT) level by using the two-layered ONIOM approach. The results of these investigations indicate that the retro-cycloaddition reaction of pyrrolidinofullerenes is favored compared to the retro- cycloaddition reaction of 2-pyrazolinofullerenes in compounds 1a-c. Evidence of the occurrence of this process have been observed both by HPLC and MS-MALDI, these findings being in good agreement with those predicted by theoretical calculations. Introduction variety of new reactions.4 Some of us have previously reported the thermally induced transition metal catalyzed Since fullerenes1 and other molecular carbon nanostruc- tures2 were discovered, a remarkable effort has been devoted 3 (3) (a) Hirsch A. The Chemistry of Fullerenes; Wiley-VCH: Weinheim, to their chemical modification. Moreover, owing to their Germany, 2005.
    [Show full text]
  • Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
    Biosensors 2015, 5, 712-735; doi:10.3390/bios5040712 OPEN ACCESS biosensors ISSN 2079-6374 www.mdpi.com/journal/biosensors/ Review Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms Sanaz Pilehvar * and Karolien De Wael AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-3265-3338. Academic Editors: Prabir Patra and Ashish Aphale Received: 9 September 2015 / Accepted: 14 October 2015 / Published: 23 November 2015 Abstract: Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. Keywords: nanotechnology; nanostructures; nano-bio hybrids; fullerene-biomolecule; biosensors 1. Introduction Bio-nanotechnology is a new emerging field of nanotechnology and combines knowledge from engineering, physics, and molecular engineering with biology, chemistry, and biotechnology aimed at the development of novel devices, such as biosensors, nanomedicines, and bio-photonics [1].
    [Show full text]
  • Rsc Cc C3cc46247a 3..5
    ChemComm View Article Online COMMUNICATION View Journal | View Issue An effective retro-cycloaddition of M3N@C80 Cite this: Chem. Commun., 2013, (M = Sc, Lu, Ho) metallofulleropyrrolidines† 49, 10489 Bo Wu,a Taishan Wang,a Zhuxia Zhang,a Yongqiang Feng,a Lihua Gan,b Li Jianga Received 15th August 2013, and Chunru Wang*a Accepted 17th September 2013 DOI: 10.1039/c3cc46247a www.rsc.org/chemcomm Sc3N@C80 fulleropyrrolidines are typical metallofullerene deriva- Echegoyen et al. proposed the isolation of metallofullerenes by an 16 tives which were generated by the reaction of Sc3N@C80 with electrochemical method. In this communication, we report N-trityloxazolidinone. Here we report an effective retro-reaction of a reversible cycloaddition reaction for TNT metallofullerenes, Sc3N@C80 fulleropyrrolidine by using 3-chloroperoxybenzoic acid which is considered to be a promising separation technique for to give pristine Sc3N@C80 in a high yield. This technique is metallofullerenes. expected to be used for separating metallofullerenes (M3N@C80) It is well known that the 1,3-dipolar cycloaddition reaction from hollow fullerenes without HPLC. between (metallo)fullerenes and azomethine ylides (Prato reac- tion) is widely used to prepare various (metallo)fulleropyr- Endohedral metallofullerenes (EMFs) are novel nanomaterials rolidines.17–19 Moreover, the retro-cycloaddition reactions of with stable nesting structures and unique electronic proper- fulleropyrrolidines and metallofulleropyrrolidines are also of ties.1–4 In this family, tri-metallic nitride template (TNT) cluster- great concern as the cycloaddition reversibility is related to 5–7 21 fullerenes, such as Sc3N@C80,Gd3N@C80,andLu3N@C80,have their yield optimization and recycling of metallofullerenes.
    [Show full text]
  • Molecular Modeling 2010
    Research Report by Dr. Kirill Yu. Monakhov – Graduate College 850 “Molecular Modeling 2010 Research Report by Dr. Kirill Yu. Monakhov Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, Fax: +49-6221-546617. Supervisor: Gerald Linti Abstract In the framework of my Ph.D. thesis, the polynuclear bismuth chemistry has been investigated from different perspectives with the main focus on four types of the chemical bonding. Thus, the section of bismuth–bismuth bonding affects redox/metathesis reactions of BiBr3 with bulky lithium silanide Li(thf)3SiPh2tBu in three different ratios, leading to the formation of a Bi–Bi bonded compound, (tBuPh2Si)4Bi2 as one of the reaction products. The · quantum chemical study has been mainly performed to shed light on the processes of oligomerisation of R2Bi radicals and bismuth dimers. That is a major challenge in the context of ''thermochromicity'' and ''closed-shell interactions'' in inorganic chemistry of organobismuth compounds with homonuclear Bi–Bi bonds. The section of bismuth–transition-metal bonding gives a deep insight into the structures, the chemical bonding and the 4– electronic behavior of heteronuclear bulky Bi–Fe cage-like clusters, cubic [Bi4Fe8(CO)28] and seven-vertex [Bi4Fe3(CO)9], on the experimental and theoretical level. The section of bonding in bismuth–cyclopentadienyl compounds represents a detailed theoretical and experimental study of molecular systems based on 2+ cyclopentadienyl bismuth units such as (C5R5)Bi , [(C5R5)Bi]n and (C5R5)BiX2 (R = H, Me; X = F, Cl, Br, I; n = 1−4) in order to develop an effective adjustment of their electronic and bonding behavior and then, to be able to manipulate highly fluxional Bi–C5R5 bonds.
    [Show full text]
  • Symmetry 2010, 2, 1745-1762; Doi:10.3390/Sym2041745 OPEN ACCESS Symmetry ISSN 2073-8994
    Symmetry 2010, 2, 1745-1762; doi:10.3390/sym2041745 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Review n– Polyanionic Hexagons: X6 (X = Si, Ge) Masae Takahashi Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; E-Mail: [email protected]; Tel.: +81-22-795-4271; Fax: +81-22-795-7810 Received: 16 August 2010; in revised form: 7 September 2010 / Accepted: 27 September 2010 / Published: 30 September 2010 Abstract: The paper reviews the polyanionic hexagons of silicon and germanium, focusing on aromaticity. The chair-like structures of hexasila- and hexagermabenzene are similar to a nonaromatic cyclohexane (CH2)6 and dissimilar to aromatic D6h-symmetric benzene (CH)6, although silicon and germanium are in the same group of the periodic table as carbon. Recently, six-membered silicon and germanium rings with extra electrons instead of conventional substituents, such as alkyl, aryl, etc., were calculated by us to have D6h symmetry and to be aromatic. We summarize here our main findings and the background needed to reach them, and propose a synthetically accessible molecule. Keywords: aromaticity; density-functional-theory calculations; Wade’s rule; Zintl phases; silicon clusters; germanium clusters 1. Introduction This review treats the subject of hexagonal silicon and germanium clusters, paying attention to the two-dimensional aromaticity. The concept of aromaticity is one of the most fascinating problems in chemistry [1,2]. Benzene is the archetypical aromatic hexagon of carbon: it is a planar, cyclic, fully conjugated system that possesses delocalized electrons. The two-dimensional aromaticity of planar monocyclic systems is governed by Hückel’s 4N + 2 rule, where N is the number of electrons.
    [Show full text]
  • S from a Sterically Controlled Azomethine Ylide Cycloaddition Polymerization † † ‡ † § † † Hasina H
    Article pubs.acs.org/Macromolecules Synthesis of Main-Chain Poly(fullerene)s from a Sterically Controlled Azomethine Ylide Cycloaddition Polymerization † † ‡ † § † † Hasina H. Ramanitra, Hugo Santos Silva, , Bruna A. Bregadiolli, , Abdel Khoukh, Craig M. S. Combe, ∥ ‡ § † ∥ Simon A. Dowland, Didier Begué ,́Carlos F. O. Graeff, Christine Dagron-Lartigau, Andreas Distler, ⊥ # Graham Morse, and Roger C. Hiorns*, † Universitéde Pau et des Pays de l’Adour, IPREM (EPCP, CNRS-UMR 5254), 2 Avenue President́ Angot, 64053 Pau, France ‡ Universitéde Pau et des Pays de l’Adour, IPREM (ECP, CNRS-UMR 5254), 2 Avenue President́ Angot, 64053 Pau, France § Departamento de Física-FC, UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, Brazil ∥ Belectric OPV GmbH, Landgrabenstr. 94, 90443 Nürnberg, Germany ⊥ Merck Chemicals Ltd., Chilworth Technical Centre, University Parkway, SO16 7QD Southampton, United Kingdom # CNRS, IPREM (EPCP, CNRS-UMR 5254), 64053 Pau, France *S Supporting Information ABSTRACT: Fullerene is used as a monomer in this simple method to prepare soluble, well-defined polymers. The sterically controlled azomethine ylide cycloaddition polymer- ization of fullerene (SACAP) yields macromolecules with molecular weights of around 25 000 g mol−1. Importantly, cumbersome comonomers are employed to restrict cross- linking. Extensive characterizations, with the help of modeling studies, indicate that the polymers are regio-irregular with a majority of trans-3 isomers. Of particular interest is the exceptional ease of preparing polymers with zero metal content. ■ INTRODUCTION polymerization (ATRAP) of fullerene permits directed, paired 12 1 radical additions to one C60 phenyl ring at 1,4-positions, it Azomethine ylide cycloadditions to fullerene (C60), commonly called Prato chemistry, by way of their facile nature and requires high quantities of CuBr which elicits concerns of from https://pubs.acs.org/doi/10.1021/acs.macromol.5b02793.
    [Show full text]
  • A 1,3-Dipolar Cycloaddition Protocol to Porphyrin-Functionalized Reduced Graphene Oxide with a Push-Pull Motif
    Nano Research 1 DOINano 10.1007/s12274Res -014-0569-x A 1,3-Dipolar Cycloaddition Protocol to Porphyrin-Functionalized Reduced Graphene Oxide with a Push-Pull Motif Aijian Wang,1 Wang Yu,1 Zhengguo Xiao,2 Yinglin Song,2 Marie P. Cifuentes,3 Mark G. Humphrey,3 and Chi Zhang*1 Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-014-0569-x http://www.thenanoresearch.com on Aughst 25, 2014 © Tsinghua University Press 2014 Just Accepted This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI®), which is identical for all formats of publication. Graphical Table of Contents Porphyrin-functionalized reduced graphene oxide with a push-pull motif has been prepared following two different approaches: a straightforward Prato reaction with sarcosine and a formyl-containing porphyrin, and a stepwise approach that involved a former Prato cycloaddition followed by nucleophilic substitution with an appropriate porphyrin.
    [Show full text]
  • Development of Synthetic Methodology for Non-Symmetric Fullerene Dimers
    Uppsala University Department of Chemistry - BMC Degree Project C in Chemistry, 1KB010 Development of synthetic methodology for non-symmetric fullerene dimers Author: Fredrik Barn˚a Supervisor: Prof. Helena Grennberg Merve Ergun Donmez¨ June 3, 2019 Abstract This bachelor thesis covers the initial development of a synthesis of fullerene dimers using two different types of linking reactions. Different setups for [3+2] cycloadditions to fullerenes (Prato reaction) were tested, and for that purpose, an N-alkylated amino acid was synthesised. Hydroarylation of fullerene using Rh- catalysis was also studied, using both MIDA protected and unprotected boronic acids, as well as by using cycloaddition products. A range of model compounds in form of fulleropyrrolidenes were synthesised. Products were purified with HPLC and analysed with MALDI-MS and 1H NMR. A range of new compounds were synthesised and characterisation of them was begun. With MALDI-MS, indica- tions that the fullerene dimer had formed were found. Using synthesised model compounds, by-products of the hydroarylation reaction were identified. Sammanfattning Denna kandidatuppsats behandlar p˚ab¨orjandet av syntesutvecklingen f¨or bildan- det av fullerendimerer genom anv¨andandet av tv˚aolika sorters l¨ankningskemi. Oli- ka f¨orh˚allandenoch reagens f¨or [3+2]-cykloaddition till fullerener (Pratoreaktio- nen) studerades, och i samband med det syntetiserades en N-alkylerad aminosyra. Hydroarylering av fullerener med hj¨alp utav rodiumkatalys studerades ¨aven, genom reaktioner med b˚adeskyddade och oskyddade borsyror, inklusive fulleropyrrolidi- ner. Produkter har renats upp med HPLC och analyserats med MALDI-MS och 1H NMR. En upps¨attning nya substanser har syntetiserts, men karakt¨ariseringen av dessa har inte slutf¨orts.
    [Show full text]
  • A Multicentre-Bonded &Lsqb
    ARTICLE Received 8 May 2014 | Accepted 20 Jan 2015 | Published 23 Feb 2015 DOI: 10.1038/ncomms7331 I A multicentre-bonded [Zn ]8 cluster with cubic aromaticity Ping Cui1,*, Han-Shi Hu2,*, Bin Zhao1, Jeffery T. Miller3, Peng Cheng1 & Jun Li2 Polynuclear zinc clusters [Znx](x42) with multicentred Zn–Zn bonds and þ 1 oxidation state zinc (that is, zinc(I) or ZnI) are to our knowledge unknown in chemistry. Here we report I 12 À the polyzinc compounds with an unusual cubic [Zn 8(HL)4(L)8] (L ¼ tetrazole dianion) I cluster core, composed of zinc(I) ions and short Zn–Zn bonds (2.2713(19) Å). The [Zn 8]- bearing compounds possess surprisingly high stability in air and solution. Quantum chemical 1 I studies reveal that the eight Zn 4s electrons in the [Zn 8] cluster fully occupy four bonding molecular orbitals and leave four antibonding ones entirely empty, leading to an extensive electron delocalization over the cube and significant stabilization. The bonding pattern of the cube represents a class of aromatic system that we refer to as cubic aromaticity, which follows a 6n þ 2 electron counting rule. Our finding extends the aromaticity concept to cubic metallic systems, and enriches Zn–Zn bonding chemistry. 1 Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry of the Ministry of Education, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China. 2 Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.
    [Show full text]
  • Supramolecular Approaches for Taming the Chemo- and Regiochemistry of C60 Addition Reactions
    Published online: 2021-04-01 146 Organic Materials S. B. Beil, M. von Delius Short Review Supramolecular Approaches for Taming the Chemo- and Regiochemistry of C60 Addition Reactions Sebastian B. Beila,b Max von Delius*a a Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany b Current address: Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States [email protected] Dedicated to Prof. Peter Bäuerle on the occasion of his 65th birthday. commonly used transformations, whose feasibility under Received: 15.01.2021 mild conditions is mainly due to the unique reactivity of the Accepted after revision: 9.02.2021 2a DOI: 10.1055/s-0041-1727182; Art ID: om-21-0008sr fullerene double bonds. In all these reactions, different License terms: numbers of addends can be installed at the fullerene core, such that the so-called mono, bis, tris, tetrakis, pentakis or © 2021. The Author(s). This is an open access article published by Thieme under the 8 terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, hexakis products are obtained. In respect to this problem of permitting copying and reproduction so long as the original work is given appropriate chemoselectivity, herein we mainly focus on the formation credit. Contents may not be used for commercial purposes, or adapted, remixed, “ transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) of bis-adducts, since these derivatives represent a sweet spot” regarding solubility and electron-acceptor capability.9 Abstract The chemo- and regioselective functionalization of fullerenes When forming bis-adducts with symmetrical reagents, up is a long-standing problem of organic synthesis.
    [Show full text]
  • First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization
    First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Scharf, Austin Bennett. 2013. First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11169796 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ©2013 – Austin B. Scharf All rights reserved. Dissertation Adviser: Professor Theodore A. Betley Austin B. Scharf First-Row Transition Metal Complexes of Dipyrrinato Ligands: Synthesis and Characterization Abstract A library of variously-substituted dipyrrins and their first-row transition metal (Mn, Fe, Cu, Zn) complexes have been synthesized, and the effects of peripheral substituents on the spectroscopic, electrochemical, and structural properties of both the free-base dipyrrins and their metal complexes has been explored. The optical and electrochemical properties of the free dipyrrins follow systematic trends; with the introduction of electron-withdrawing substituents in the 2-, 3-, 5-, 7-, and 8-positions of the dipyrrin, bathochromic shifts in the absorption spectra are observed, oxidation becomes more difficult, and reduction becomes more facile. Similar effects are seen for iron(II) dipyrrinato complexes, where peripheral substitution of the dipyrrinato ligand induces red-shifts in the absorption spectra and increases the oxidation potential of the bound iron.
    [Show full text]