Geochemistry of Darwin Impact Glass and Target Rocks
vol. 54, w. 1463-1474 001~703?/901$3.W + .m pk. Printedin U.S.A. Geochemistry of Darwin impact glass and target rocks THOMAS MEISEI,,‘,* CHRISTIANKOEBERL, ‘*‘*+ and R. J. FORD”* ‘Institute of Geochemistry, University of Vienna, Dr.-Karl-Lueger-Ring I, A- 1010 Vienna, Austria *Lunar and Planetary Institute, 3303 NASA Road 1, Houston, TX 77058, USA 3Department of Geology, Unive&y of Tasmania, Hobart, Tasmania 7001, Australia (Received September 26, 1989;accepted in r~~sed~r~ February 15, 1990) Abstract-We have analyzed the major and trace element composition of 18 Darwin glass samples and 7 target rocks (sandstones, shales, and a quiz) from the Darwin crater area. On the basis of our data, and using statistical methods, 3 chemically distinct groups of Darwin glass were identified: A (low Fe, Al = LFe,Al, or average K&win glass group), B (HFe,Al group), and C (HMg,Na group). The glasses of group C also show anomalous enrichments of several elements, e.g., Cr, Mn, Co, and Ni. Electron microprobe studies show that the glasses are inhomogeneous on the micrometer scale, which is typical for impact glasses. The geochemistry of all &sses is very similar to terrestrial sediments and thus supports the impact origin model. We have performed mixing calculations which show that in general Darwin gIass can be formed by melting and mixing local target rocks. The best fit is obtained for a mixture of 30% quart&e, 60% shale BIDG, and IO% shale Bl-DG. Some major element contents do not agree exactly, which is most probably due to the limited selection of target rocks that were available for our study.
[Show full text]