Diversity and Dynamics of Relevant Nanoplanktonic Diatoms in The

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Dynamics of Relevant Nanoplanktonic Diatoms in The Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel Laure Arsenieff, Florence Le Gall, Fabienne Rigaut-Jalabert, Frédéric Mahé, Diana Sarno, Léna Gouhier, Anne-Claire Baudoux, Nathalie Simon To cite this version: Laure Arsenieff, Florence Le Gall, Fabienne Rigaut-Jalabert, Frédéric Mahé, Diana Sarno, etal.. Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel. ISME Journal, Nature Publishing Group, 2020, 14 (8), pp.1966-1981. 10.1038/s41396-020-0659-6. hal- 02888711 HAL Id: hal-02888711 https://hal.sorbonne-universite.fr/hal-02888711 Submitted on 3 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5 9 / w b [ ! ! " C [ D ! " C % w &W % (" C) ) a ) +" 5 , -" [) D ." ! &/ . 0 " b , ,% 1 )" /bw," 1aw 2 -- & 9 a t " , .4 w" (5678 w" C (,% 1 )" /bw," C) ) w Cw(-(-" , .4 w" (5768 w" C +/9w!5" 1aw .Dt9" +-+56 a " C -, : ; ! 5 " < / " 68 ( b " 9 .,% 1 )" /bw," Cw(-(-" w / / " , .4 w" (5768 w" C ! = % 4 / [ ! , .4 w 1aw 2 -- /bw,&,% 1 ) t D = (5768 w C >%&? @++ ( 56 (5 (+ (+ ! b , , .4 w 1aw 2 -- /bw,&,% 1 ) t D = (5768 w C >%&? @++ ( 56 (5 (. +- / 9 = !.,=w!/= 9 " . ? 5 % % " " " % " : ? 9 " % ? A" 9 / B,ha[9=&! D? / % " & a " % ? , % ? = 4 % ? h " " % ? h " & ? 9b=wh51/=9hb 0 % " % 0 ? 5 " % " % : E % " B F+D? b" % 4 0 % B-D? , : " " % B-D? 1 " % & % : BG (8 H D % & B 0 B.F6D 9 / b , D? = B % ( (8 H D % " : (&. H % % ? ," " 0 " % B5F D? = a B (D : ( . H B +F .D % I B5" -F(8D? 9 % = " % B % 28 % J( KD? a % % B5" ((D? / " % % 0 & % B5D? = % % = h 0 4 a B D % % ? ! % " 4 a ( 6 % 4 = h B5" 5D? a % ? A" % &4 % 4 ? C % % " E : ? = " 4 6, % wb! - a % D . 4 % ? 1 " 4 " 0 && ? ! 4 " % % % 0 % ? 9 " : & ,ha[9=&! w B 9 / " 9/D? 1 % " a " 0 % % (885 (8 7? a " ? ! 0 % ? !" % ? a!=9w9![ !b5 a9=Ah5, 9 5 . [ b % & ,ha[9=&! 9 / B-6-7 6 b" +.67 D a (7" (8 . Bh% (8 . & h% (8 7D? , ? C " BL .8 H D C!/, ! B. 5 " , W" /!" 1,!D" % a B(-D? C " : % ? , M@, % . 8 ? ! % " Bh 9N2 " h / " =" W D? / M@, B(.D 6O/" ( ( 88 P ? Q( ? Q % Bt a =[R5 6S67.D? 5 w / / Bw//" SS&& ?SD B= % D? a / 0 % Bh .N. " =" W D -80 880 %E ? / ,th= w=& B5 9 " , A" a9" 1,!D? / % 8?6 H % Bb" D ( .7O/? = % " : % B,9a" t D( t" t D 8 <? / ,9a 9 W BSS E? ?SESD? a = ,,1& 6," 9=, [,1&(6, wb! % t/w ? = 7+C B!/D/==D=/=/!!!D!==!D 6 6w B!/DD!!!//==D==!/D!D B(7D 6," +(5C BD=D!!//=D/wD!!DD!=/!D B(2D 5 w&w B=!=D/==!!!==/!D/DDD=D B(6D 9=," 5 w&C B!///D/=D!!===!!D/!=!D B(6D 5+/ B!/D!!/D!===D/!/D=/!DD B(5D (6, 5 &5+ ? C t/w " 4 B(?(. H[D 0 %E 5.O/ . -O/? = 0 B+8 H[ D t a a0 B 0 " = , D" +T 5a,h 8?(. Ha ? t/w % 5.O/ . " % +. B 6,&(6,D -8 B9=,D 5.O/ +8 " +8 ..O" .(O .2O 6," 9=, (6, " 0 2(O/ +8? = % 0 2(O/ 8 ? t/w , ,4 D!=/ . BSS? &%? S S 0? " / " D D? ,4 : D 5? ?+ D . .[!,= BSS% ? %? ? ?S. ?D? t 9 0 " 5b! 4 6, (6, wb! 4 = B= % , D? = 4 % a!CC= 2 B [&9b,& % D BSS ?%?ES SS" B+8D? C " .58 .+- B 6, (6, D % 0 ta[ +?8 BSS? & ?S S" J+ KD % ,a, B+(D 888 % ? a9D!2 B? ++D : ? C B 6,@(6,D" D=w 888 % ? = " ,ha[9=&! % B / J+-K 4 D? ." % (885 (8 7" B. [D + H % B D? C % &68O/ 5b! 0 ? b 0 & 5b! b, U t 99 Ba &b D ? 5b! 0 t/w <- 6, wb! B +68 %D =!w-.-C5 =!ww9<+ B? +.D? C " 5b! " 4 C BSS? ? S S" t &&h " ,: D 4 & (0(.8% 9 a,4? ,4 % % BSS%? S & S SD? ,4 h = 0 1 Bh=1D , B+7D? = 0 h=1 t w% w Btw (D % B -?2?(D B(+D? 0 B % D" 4 h=1 b/.9 & % .[!,= ? ! 4 " (. B % D? a % (8 - (8 .? 9 " (- 25. h=1 B - +.7 7-+ D 7+ (885&(8 7? w % h=1 4 88 T a .[!,= D 5? ?+? L 9 ,ha[9=&! " % a ? ? B= % " % a (8 .D % % B " ! J+2KD? ." & B .8 H D CS( " % ( % %? = % BDCSC " 8?(( P t9, " D 8?. [ 8?(( H 4 ?. [ (-& ? / % .
Recommended publications
  • Diversity in the Genus Skeletonema (Bacillariophyceae). Ii. an Assessment of the Taxonomy of S. Costatum-Like Species with the Description of Four New Species1
    J. Phycol. 41, 151–176 (2005) r 2005 Phycological Society of America DOI: 10.1111/j.1529-8817.2005.04067.x DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM-LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES1 Diana Sarno,2 Wiebe H. C. F. Kooistra Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy Linda K. Medlin Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany Isabella Percopo and Adriana Zingone Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy The morphology of strains of Skeletonema Grev- Abbreviations: AIC, Akaike information criterion; ille emend Sarno et Zingone was examined in LM, CCAP, Culture Collection of Algae and Protozoa; TEM, and SEM and compared with sequence data CCMP, The Provasoli-Guillard National Center for from nuclear small subunit rDNA and partial large Cultures of Marine Phytoplankton; FP,fultoportula; subunit rDNA. Eight distinct entities were identi- FPP, fultoportula process; hLRTs, hierarchical like- fied, of which four were known: S. menzelii Guillard, lihood ratio tests; IFPP, intercalary fultoportula Carpenter et Reimann; S. pseudocostatum Medlin process; IRP, intercalary rimoportula; IRPP, inter- emend. Zingone et Sarno; S. subsalsum (Cleve) Bet- calary rimoportula process; LSU, large subunit; hge; and S. tropicum Cleve. The other four species ML, maximum likelihood; MP, maximum parsimo- were new: S. dohrnii Sarno et Kooistra sp. nov., S. ny; RP, rimoportula; RPP, rimoportula process; grethae Zingone et Sarno sp. nov., S. japonicum Zin- SSU, small subunit; SZN, Stazione Zoologica ‘‘A. gone et Sarno sp. nov., and S. marinoi Sarno et Zin- Dohrn’’ of Naples; TFP, terminal fultoportula; gone sp.
    [Show full text]
  • Community Composition of the Morphologically Cryptic Diatom Genus Skeletonema in Narragansett Bay
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2015 COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY Kelly Canesi University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Canesi, Kelly, "COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY" (2015). Open Access Master's Theses. Paper 549. https://digitalcommons.uri.edu/theses/549 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY BY KELLY CANESI A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2015 MASTER OF SCIENCE THESIS OF KELLY CANESI APPROVED: Thesis Committee: Major Professor: Tatiana Rynearson Candace Oviatt Christopher Lane Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT It is well known that morphologically cryptic species are routinely present in planktonic communities but their role in important ecological and biogeochemical processes is poorly understood. I investigated the presence of cryptic species in the genus Skeletonema, an important bloom-forming diatom, using high-throughput genetic sequencing and examined the ecological dynamics of communities relative to environmental conditions. Samples were obtained from the Narragansett Bay Long-Term Plankton Time Series, where Skeletonema spp.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • PHYCOLOGICAL REVIEWS 18 the Species Concept in Diatoms
    Phycologia (1999) Volume 38 (6), 437-495 Published 10 December 1999 PHYCOLOGICAL REVIEWS 18 The species concept in diatoms DAVID G. MANN* Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK D.G. MANN. 1999. Phycological reviews 18. The species concept in diatoms. Phycologia 38: 437-495. Diatoms are the most species-rich group of algae. They are ecologically widespread and have global significance in the carbon and silicon cycles, and are used increasingly in ecological monitoring, paleoecological reconstruction, and stratigraphic corre­ lation. Despite this, the species taxonomy of diatoms is messy and lacks a satisfactory practical or conceptual basis, hindering further advances in all aspects of diatom biology. Several model systems have provided valuable insights into the nature of diatom species. A consilience of evidence (the 'Waltonian species concept') from morphology, genetic data, mating systems, physiology, ecology, and crossing behavior suggests that species boundaries have traditionally been drawn too broadly; many species probably contain several reproductively isolated entities that are worth taxonomic recognition at species level. Pheno­ typic plasticity, although present, is not a serious problem for diatom taxonomy. However, although good data are now available for demes living in sympatry, we have barely begun to extend studies to take into account variation between allopatric demes, which is necessary if a global taxonomy is to be built. Endemism has been seriously underestimated among diatoms, but biogeographical and stratigraphic patterns are difficult to discern, because of a lack of trustwOlthy data and because the taxonomic concepts of many authors are undocumented. Morphological diversity may often be a largely accidental consequence of physiological differentiation, as a result of the peculiarities of diatom cell division and the life cycle.
    [Show full text]
  • Insights Into Global Planktonic Diatom Diversity: Comparisons Between Phylogenetically Meaningful Units That Account for Time
    bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Insights into global planktonic diatom diversity: Comparisons between phylogenetically meaningful units that account for time Teofil Nakov, Jeremy M. Beaulieu, and Andrew J. Alverson Department of Biological Sciences University of Arkansas 1 University of Arkansas, SCEN 601 Fayetteville, AR 72701 Abstract Metabarcoding has offered unprecedented insights into microbial diversity. In many studies, short DNA sequences are binned into consecutively higher Linnaean ranks, and ranked groups (e.g., genera) are the units of biodiver- sity analyses. These analyses assume that Linnaean ranks are biologically meaningful and that identically ranked groups are comparable. We used a meta-barcode dataset for marine planktonic diatoms to illustrate the limits of this approach. We found that the 20 most abundant marine planktonic diatom genera ranged in age from 4 to 134 million years, indicating the non- equivalence of genera because some had more time to diversify than others. Still, species richness was only weakly correlated with genus age, highlighting variation in rates of speciation and/or extinction. Taxonomic classifications often do not reflect phylogeny, so genus-level analyses can include phylogenet- ically nested genera, further confounding rank-based analyses. These results underscore the indispensable role of phylogeny in understanding patterns of microbial diversity. Keywords: diversification, metabarcoding, microbes, phylogeny Preprint submitted to Bioarxiv July 24, 2017 bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017.
    [Show full text]
  • Planktonic Microbes in the Gulf of Maine Area William K.W
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2011 Planktonic Microbes in the Gulf of Maine Area William K.W. Li Robert A. Andersen See next page for additional authors Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Citation/Publisher Attribution Li WKW, Andersen RA, Gifford DJ, Incze LS, Martin JL, et al. (2011). Planktonic Microbes in the Gulf of Maine Area. PLoS ONE 6(6): e20981. Available at: http://dx.doi.org/10.1371/journal.pone.0020981 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors William K.W. Li, Robert A. Andersen, Dian J. Gifford, Lewis S. Incze, Jennifer L. Martin, Cynthia H. Pilskaln, Juliette N. Rooney-Varga, Michael E. Sieracki, William H. Wilson, and Nicholas H. Wolff This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/69 Review Planktonic Microbes in the Gulf of Maine Area William K. W. Li1*, Robert A. Andersen2, Dian J. Gifford3, Lewis S. Incze4, Jennifer L. Martin5, Cynthia H. Pilskaln6, Juliette N. Rooney-Varga7, Michael E. Sieracki2, William H. Wilson2, Nicholas H. Wolff4 1 Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, 2 Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America, 3 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, United States of America, 4 Aquatic Systems Group, University of Southern Maine, Portland, Maine, United States of America, 5 Fisheries and Oceans Canada, Biological Station, St.
    [Show full text]
  • BACHELOR THESIS Surveillance of Phytoplankton Key Species
    BACHELOR THESIS Surveillance of Phytoplankton Key Species in the “AWI-HAUSGARTEN” (Fram Strait) 2010-2013 via Quantitative PCR by Sebastian Micheller Matriculation No.: 739820 in the Bachelor Degree Course Biotechnology – Dept. of Applied Natural Sciences – Hochschule Esslingen, Germany tendered at July 1st, 2014 First Examiner: Prof. Dr. Dirk Schwartz 1 Second Examiner: Dr. Katja Metfies 2 Spaced out till: August 1st, 2015 1 Hochschule Esslingen, 73728 Esslingen a. N., Germany 2 Alfred-Wegener-Institute for Polar & Marine Research, 27570 Bremerhaven, Germany STATEMENT OF AUTHORSHIP I declare that the thesis Surveillance of Phytoplankton Key Species in the „AWI-HAUSGARTEN“ (Fram Strait) 2010-2013 via Quantitative PCR has been composed by myself, and describes my own work, unless otherwise acknowledged in the text. It has not been accepted in any previous application for a degree. Esslingen a. N., July 1st, 2014 Place/date Sebastian Micheller I ACKNOWLEDGMENTS First and foremost, I would like to express my deep gratitude to Dr. Katja Metfies, my supervisor at the Alfred-Wegener-Institute, Bremerhaven. Her patient guidance, enthusiastic encouragement and useful critiques were the cornerstones, making this thesis possible. Beside her, my supervisor Prof. Dr. Dirk Schwartz (Hochschule Esslingen) deserves my special thanks. During my studies at the Hochschule Esslingen, he inspired me for the field of molecular biology, being always a great mentor and support - even across the great distance during this study (Bremerhaven – Esslingen). I feel very great appreciation for them, giving me chances to grow as a person and as a scientist. I would also like to thank Dr. Christian Wolf and Dr.
    [Show full text]
  • The Model Marine Diatom Thalassiosira Pseudonana Likely
    Alverson et al. BMC Evolutionary Biology 2011, 11:125 http://www.biomedcentral.com/1471-2148/11/125 RESEARCHARTICLE Open Access The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella Andrew J Alverson1*, Bánk Beszteri2, Matthew L Julius3 and Edward C Theriot4 Abstract Background: Publication of the first diatom genome, that of Thalassiosira pseudonana, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated T. pseudonana as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world’s oceans. Results: The natural distribution of T. pseudonana spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) T. pseudonana marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, T. pseudonana is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of T. pseudonana and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that T. pseudonana is more appropriately classified by its original name, Cyclotella nana. Cyclotella contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of T. pseudonana. Conclusions: The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of T.
    [Show full text]
  • Сборник Материалов Докладов Iii Международной Научной Конференции, 24 – 29 Августа 2014 Года / Институт Биологии Внутренних Вод Им
    РОССИЙСКАЯ АКАДЕМИЯ НАУК ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ Институт биологии внутренних вод им. И.Д. Папанина РАН РУССКОЕ БОТАНИЧЕСКОЕ ОБЩЕСТВО Материалы Международной конференции ПРОБЛЕМЫ СИСТЕМАТИКИ И ГЕОГРАФИИ ВОДНЫХ РАСТЕНИЙ Борок, Россия, 21—24 октября 2015 г. Proceedings of International conference PROBLEMS OF TAXONOMY AND GEOGRAPHY OF AQUATIC PLANTS Borok, Russia, 21—24 October, 2015 Ярославль 2015 Yaroslavl 2015 УДК 582.26 ББК 28.591.2 П78 ISBN 978-5-906682-41-3 Проблемы систематики и географии водных растений : материалы Международной конференции (Борок, Россия, 21—24 октября 2015 г. ). — Ярославль : Филигрань, 2015. — 104 с. В сборнике помещены материалы исследований по проблемам систематики, биораз- нообразия, распространения, экологии, морфологии, эволюции и молекулярной филогении водных растений (микро- и макроводоросли, мохообразные, сосудистые растения), их исполь- зовании в оценке качества окружающей среды, палеоэкологии и биостратиграфии. Для специалистов в области ботаники, гидробиологии, экологии и стратиграфии. Problems of taxonomy and geography of aquatic plants : proceedings of International conference (Borok, Russia, 21—24 October, 2015). — Yaroslavl : Filigran, 2015. — 104 p. The Proceedings include the materials of investigations in taxonomy, biodiversity, distribution, ecology, morphology, evolution and molecular phylogeny of aquatic plants (micro- and macroalgae, bryophytes, vascular plants), their use in assessment of environment conditions, paleoecology and biostratigraphy. The book is addressed to researchers in botany, hydrobiology, ecology and stratigraphy. Материалы конференции печатаются в авторской редакции. Proceedings of the conference are published in author’s edition. Организация конференции и издание материалов поддержано Российским фондом фундаментальных исследований (№15-04-20735). ISBN 978-5-906682-41-3 УДК 582.26 ББК 28.591.2 © Коллектив авторов, 2015 © Институт биологии внутренних вод им. И. Д.
    [Show full text]
  • Edward Claiborne Theriot
    E DWARD C LAIBORNE T HERIOT CURRICULUM VITAE J ANUARY 19, 2021 [email protected] Professor, Department of Integrative Biology Director, Texas Memorial Museum University of Texas at Austin I. Education University of Michigan, Ann Arbor, MI, 1978-1983, School of Natural Resources, Ph.D. Louisiana State University, Baton Rouge, LA, 1975-1978, Fisheries Biology, Botany minor, Phi Kappa Phi Honor Society, M.S. Louisiana State University, Baton Rouge, LA, 1972-1975, Zoology, B.S. University of Miami, Coral Gables, FL, 1971-1972, Biology, no degree. II. Professional Experience II A. Formal positions 2020 - . Harold C. and Mary D. Bold Professor of Cryptogamic Botany, Department of Integrative Biology, UT Austin. 1997 - . Director, Texas Natural Science Center/Texas Memorial Museum, University of Texas at Austin (UT Austin). 1997 - 2020. Jane and Roland Blumberg Centennial Professor of Molecular Evolution, Department of Integrative Biology, UT Austin. 1994-1996. Vice-President, Systematics and Evolutionary Biology, Academy of Natural Sciences of Philadelphia (ANSP) 1993-1997. Associate Curator, Diatom Herbarium, ANSP. 1989-1993. Assistant Curator, Diatom Herbarium, ANSP. 1988-1989. Research Assistant Professor, Graduate Faculty, Department of Botany, Louisiana State University (LSU). 1986-1988. Assistant Research Scientist, Great Lakes Research Division (GLRD), University of Michigan (UM). 1984-1986. Research Investigator, GLRD, UM. 1984. Jessup-McHenry Fellowship. Academy of Natural Sciences of Philadelphia. 1983-1984. Research Associate, Department of Oceanography, Texas A&M University. 1978-1982. Research Assistant, GLRD, UM. 1978. Research Associate, Center for Wetland Resources, LSU. 1974-1977. Research Assistant, Louisiana Cooperative Fisheries Unit, LSU. II B. Teaching Experience BIO 301M Ecology, Evolution and Society (UT Austin) BIO 370 Evolution (UT Austin) UGS 302 Texas and Water: History, Biology and the Future (UT Austin) BIO 337 Natural History of the Protists (UT Austin).
    [Show full text]
  • Book of Abstracts Keynote 1
    GEO BON OPEN SCIENCE CONFERENCE & ALL HANDS MEETING 2020 06–10 July 2020, 100 % VIRTUAL Book of Abstracts Keynote 1 IPBES: Science and evidence for biodiversity policy and action Anne Larigauderie Executive Secretary of IPBES This talk will start by a presentation of the achievements of the Intergovernmental Science-Policy Platform for Biodiversity (IPBES) during its first work programme, starting with the release of its first assessment, on Pollinators, Pollination and Food Production in 2016, and culminating with the release of the first IPBES Global Assessment of Biodiversity and Ecosystem Services in 2019. The talk will highlights some of the findings of the IPBES Global Assessment, including trends in the contributions of nature to people over the past 50 years, direct and indirect causes of biodiversity loss, and progress against the Aichi Biodiversity Targets, and some of the Sustainable Development Goals, ending with options for action. The talk will then briefly present the new IPBES work programme up to 2030, and its three new topics, and end with considerations regarding GEO BON, and the need to establish an operational global observing system for biodiversity to support the implementation of the post 2020 Global Biodiversity Framework. 1 Keynote 2 Securing Critical Natural Capital: Science and Policy Frontiers for Essential Ecosystem Service Variables Rebecca Chaplin-Kramer Stanford University, USA As governments, business, and lending institutions are increasingly considering investments in natural capital as one strategy to meet their operational and development goals sustainably, the importance of accurate, accessible information on ecosystem services has never been greater. However, many ecosystem services are highly localized, requiring high-resolution and contextually specific information—which has hindered the delivery of this information at the pace and scale at which it is needed.
    [Show full text]