Extensive Female-Mediated Gene Flow from Sub-Saharan Africa Into Near Eastern Arab Populations

Total Page:16

File Type:pdf, Size:1020Kb

Extensive Female-Mediated Gene Flow from Sub-Saharan Africa Into Near Eastern Arab Populations Edinburgh Research Explorer Extensive female-mediated gene flow from sub-Saharan Africa into near eastern Arab populations Citation for published version: Richards, M, Rengo, C, Cruciani, F, Gratrix, F, Wilson, JF, Scozzari, R, Macaulay, V & Torroni, A 2003, 'Extensive female-mediated gene flow from sub-Saharan Africa into near eastern Arab populations', American Journal of Human Genetics, vol. 72, no. 4, pp. 1058-64. https://doi.org/10.1086/374384 Digital Object Identifier (DOI): 10.1086/374384 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: American Journal of Human Genetics Publisher Rights Statement: Copyright © 2003 by The American Society of Human Genetics. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 Am. J. Hum. Genet. 72:1058–1064, 2003 Report Extensive Female-Mediated Gene Flow from Sub-Saharan Africa into Near Eastern Arab Populations Martin Richards,1 Chiara Rengo,2,3 Fulvio Cruciani,2 Fiona Gratrix,4 James F. Wilson,5 Rosaria Scozzari,2 Vincent Macaulay,6 and Antonio Torroni7 1Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, United Kingdom; 2Dipartimento di Genetica e Biologia Molecolare, Universita` di Roma “La Sapienza,” and 3Istituto di Medicina Legale, Universita` Cattolica del Sacro Cuore, Rome; 4Department of Biological Sciences, Imperial College, and 5Department of Biology, University College London, London; 6Department of Statistics, University of Oxford, Oxford, United Kingdom; and 7Dipartimento di Genetica e Microbiologia, Universita` di Pavia, Pavia, Italy We have analyzed and compared mitochondrial DNA variation of populations from the Near East and Africa and found a very high frequency of African lineages present in the Yemen Hadramawt: more than a third were of clear sub-Saharan origin. Other Arab populations carried ∼10% lineages of sub-Saharan origin, whereas non-Arab Near Eastern populations, by contrast, carried few or no such lineages, suggesting that gene flow has been preferentially into Arab populations. Several lines of evidence suggest that most of this gene flow probably occurred within the past ∼2,500 years. In contrast, there is little evidence for male-mediated gene flow from sub-Saharan Africa in Y- chromosome haplotypes in Arab populations, including the Hadramawt. Taken together, these results are consistent with substantial migration from eastern Africa into Arabia, at least in part as a result of the Arab slave trade, and mainly female assimilation into the Arabian population as a result of miscegenation and manumission. Contacts between eastern Africa and Arabia have existed and Ethiopia were gradually incorporated into the area since the establishment of obsidian exchange networks of Arab influence. These contacts crystallized in the for- as early as the 7th millennium B.C. They were stimulated mation of the Ethio-Sabean state of Daamat on the Ti- by the growth of the Egyptian state from the 4th mil- grean plateau in ∼600 B.C. The archaeological evidence lennium onward, with possible settlements of people from suggests that this is likely to have been the result of small- Arabia in the Horn of Africa as early as the 3rd and 2nd scale colonization by several Arabian groups (including millennia B.C. The Afro-Arabian Tihama cultural com- Sabeans) and acculturation of the indigenous population plex, for which an African origin seems most likely, arose (Fattovich 1997). This was succeeded, following the de- in the mid-2nd millennium. In addition to the coastal site cline of Saba and Daamat and several centuries of iso- ∼ of Adulis in Eritrea and sites farther inland in Eritrea, lation, by the kingdom of Aksum in A.D. 100, which Ethiopia, and Sudan, it is represented on the Saudi coastal formed as part of the Roman exchange network ex- plains and the western and southern coasts of Yemen. tending from Egypt as far as India, trading via the Red Other traditions appear to have spread in the opposite Sea port of Adulis. Aksum survived for 800 years and direction (Fattovich 1997). occupied southern Arabia for part of this period. Util- Southern Arabs gained control of the Red Sea trade itarian Aksumite pottery has been found in large quan- tities in deposits from the 5th and 6th centuries in the routes in the 12th century B.C., and the first kingdom, Yemen Hadramawt, suggesting that there may have been Saba, arose in Yemen in ∼800 B.C. As a result, Eritrea substantial immigration during that period. From the 7th century onward, with the rise of Islam, Muslim com- Received December 2, 2002; accepted for publication January 21, 2003; electronically published March 10, 2003. munities became established along the coast of Eritrea Address for correspondence and reprints: Dr. Martin Richards, De- and Somalia, spreading inland from the late 1st millen- partment of Chemical and Biological Sciences, University of Hudders- nium onward (Fattovich 1997). Concomitantly, the Arab field, Queensgate, Huddersfield, HD1 3DH, United Kingdom. E-mail: slave trade, operating from pre-Islamic times but at its [email protected] ᭧ 2003 by The American Society of Human Genetics. All rights reserved. height between A.D. 650 and 1900, carried millions of 0002-9297/2003/7204-0030$15.00 men and women from the Nile Valley, the Horn of Africa, 1058 Reports 1059 and the eastern African coast across the Red Sea to Arabia Table 1 and many more millions across the Sahara (Segal 2001). Percentages of mtDNA Haplogroups L1–L3A, U6, M1, and To evaluate the extent and nature of gene flow between (pre-HV)1 in Near Eastern and African Populations Africa and the Near East, we have examined mtDNA HAPLOGROUP FREQUENCIES variation in numerous populations from the two geo- (%) graphic areas and compared it with that observed in the GROUP AND POPULATION/REGION N L1–L3A U6 M1 (pre-HV)1 Y chromosome. These genetic systems are uniparentally transmitted and trace out the female and male geneal- Arab Near East: a ogies. Moreover, their sequence variation has been sub- Iraqis 116 9 1 1 4 Bedouinb 29 10 7 7 17 divided into a number of clades, termed “haplogroups,” Palestiniansa 117 15 1 2 3 each of which has originated at one time and place and Syriansa 69 9 4 0 6 been subsequently dispersed by the movement of people. Jordaniansa 146 14 0 2 0 Thus, haplogroups tend to be geographically restricted Yemen Hadramawtb 56 34 0 4 7 and are particularly informative for detecting gene flow Non-Arab Near East: Georgiansc 105 0 0 0 2 between continents. The haplogroup profiles of Africans Armeniansa 192 0 0 0 1 and Eurasians are sufficiently distinct to allow us to ad- Azerbaijanisa 48 0 0 0 0 dress the question of historical gene flow between eastern Turksa 218 1 0 0 1 Africa and Arabia and whether the same patterns are seen Kurdsa 53 4 0 0 2 in both female and male lines of descent. Near Eastern Jews: Iraqi Jewsc 56 0 0 7 0 We studied the variation in the first hypervariable seg- Iranian Jewsc 75 0 0 1 1 ment (HVS-I) of the mtDNA control region (encompass- Ashkenazi Jewsc 78 0 3 0 3 ing at minimum nps 16090–16365 but as much as nps Georgian Jewsc 70 0 0 0 0 16017–16497 in many cases; numbering as per Ander- Yemen Jewsc 65 11 0 0 17 a son et al. [1981]) in 533 subjects from Arabic-speaking Yemen Jews 38 5 0 0 26 East Africa: communities and 960 from non-Arabic–speaking com- Ethiopiansc 74 55 3 10 8 munities in the Near East, including 344 Near Eastern Ethiopian Jewsc 46 52 0 15 15 Jews (table 1). (An additional set of 38 Yemeni Jews [Rich- Somaliansd 27 70 0 11 11 ards et al. 2000] was also included but was kept distinct, Nubianse 80 58 0 10 9 e since some members may be from the same sample as Southern Sudanese 76 92 0 4 0 Kenyansd 63 95 3 2 0 those reported by Thomas et al. [2002].) We compared West Africa: these with 74 Ethiopians and 46 Ethiopian Jews, 246 Overalld,f,g,h 447 89 3 0 0 additional East Africans, 447 West Africans, 132 Central Central Africa: Africans, and 98 Khoisan and 416 Mozambican Bantu Mbuti and Biakaf 37 100 0 0 0 i speakers from southern Africa (table 1). Haplogroup Equatorial Guineans 95 99 1 0 0 Southern Africa: affiliation was defined primarily on the basis of the ob- Kung and Khwef,j 98 100 0 0 0 served HVS-I motif, with some additional testing of di- Mozambicansk,l 416 100 0 0 0 agnostic RFLP markers to ensure that misassignments a Richards et al. (2000). were avoided. These were: haplogroups H (Ϫ7025 AluI), b Di Rienzo and Wilson (1991). HV (Ϫ14766 MseI), V (Ϫ4577 NlaIII), U (ϩ12308 c Thomas et al. (2002). HinfI), K (Ϫ9052 HaeII), JT (ϩ4216 NlaIII), T (ϩ15606 d Watson et al. (1997). Ϫ ϩ e Krings et al. (1999). AluI), F1 ( 12406 HincII), R ( 12703 MboII), M f ϩ ϩ Ϫ Vigilant et al.
Recommended publications
  • Y-Chromosome E Haplogroups: Their Distribution and Implication to the Origin of Afro-Asiatic Languages and Pastoralism
    European Journal of Human Genetics (2014) 22, 1387–1392 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Y-chromosome E haplogroups: their distribution and implication to the origin of Afro-Asiatic languages and pastoralism Eyoab I Gebremeskel1,2 and Muntaser E Ibrahim*,1 Archeological and paleontological evidences point to East Africa as the likely area of early evolution of modern humans. Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies. Most Y-chromosome haplogroup diversity in Africa, however, is present within macrohaplogroup E that seem to have appeared 21 000–32 000 YBP somewhere between the Red Sea and Lake Chad. The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today. The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic
    [Show full text]
  • Y-Chromosome and Surname Analyses for Reconstructing Past Population Structures: the Sardinian Population As a Test Case
    International Journal of Molecular Sciences Article Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case Viola Grugni 1, Alessandro Raveane 1, Giulia Colombo 1, Carmen Nici 1, Francesca Crobu 1,2, Linda Ongaro 1,3,4, Vincenza Battaglia 1, Daria Sanna 1,5, Nadia Al-Zahery 1, Ornella Fiorani 6, Antonella Lisa 6, Luca Ferretti 1 , Alessandro Achilli 1, Anna Olivieri 1, Paolo Francalacci 7, Alberto Piazza 8, Antonio Torroni 1 and Ornella Semino 1,* 1 Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; [email protected] (V.G.); [email protected] (A.R.); [email protected] (G.C.); [email protected] (C.N.); [email protected] (F.C.); [email protected] (L.O.); [email protected] (V.B.); [email protected] (D.S.); [email protected] (N.A.-Z.); [email protected] (L.F.); [email protected] (A.A.); [email protected] (A.O.); [email protected] (A.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy 3 Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia 4 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia 5 Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy 6 Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; fi[email protected]
    [Show full text]
  • ZEYLANICA a Study of the Peoples and Languages of Sri Lanka
    ZEYLANICA A Study of the Peoples and Languages of Sri Lanka Asiff Hussein Second Edition: September 2014 ZEYLANICA. A Study of the Peoples and Languages of Sri Lanka ISBN 978-955-0028-04-7 © Asiff Hussein Printed by: Printel (Pvt) Ltd 21/11, 4 th Lane, Araliya Uyana Depanama, Pannipitiya Published by: Neptune Publications CONTENTS Chapter 1 Legendary peoples of Lanka Chapter 2 The Veddas, the aboriginal inhabitants of Lanka and their speech Chapter 3 The Origins of the Sinhalese nation and the Sinhala language Chapter 4 The Origins of the Sri Lankan Tamils and the Tamil language Chapter 5 The Sri Lankan Moors and their language Chapter 6 The Malays of Sri Lanka and the local Malay language Chapter 7 The Memons, a people of North Indian origin and their language Chapter 8 Peoples of European origin. The Portuguese and Dutch Burghers Chapter 9 The Kaffirs. A people of African origin Chapter 10 The Ahikuntaka. The Gypsies of Sri Lanka INTRODUCTORY NOTE The system of transliteration employed in the text, save for citations, is the standard method. Thus dots below letters represent retroflex sounds which are pronounced with the tip of the tongue striking the roof of the mouth further back than for dental sounds which are articulated by placing the tip of the tongue against the upper front teeth. Among the other sounds transliterated here c represents the voiceless palato-alveolar affricate (as sounded in the English church ) and ś the palatal sibilant (as sounded in English sh ow ). The lingual which will be found occurring in Sanskrit words is similar in pronunciation to the palatal .
    [Show full text]
  • Female Genetic Distribution Bias in Mitochondrial Genome Observed In
    www.nature.com/scientificreports OPEN Female genetic distribution bias in mitochondrial genome observed in Parkinson’s Disease patients in Received: 07 April 2015 Accepted: 26 October 2015 northern China Published: 25 November 2015 Qiaohong Chu1, Xiaoguang Luo2, Xiaoni Zhan1, Yan Ren2 & Hao Pang1 Genetic polymorphisms associated with susceptibility to Parkinson’s disease (PD) have been described in mitochondrial DNA (mtDNA). To explore the potential contribution of mtDNA mutations to the risk of PD in a Chinese population, we examined the linkage relationship between several single nucleotide polymorphisms (SNPs) and haplotypes in mtDNA and PD. We genotyped 5 SNPs located on coding genes using PCR-RFLP analysis. A specific allele 10398G demonstrated an increased risk of PD (OR 1.30; 95% CI 0.95–1.76; P = 0.013). After stratification by gender, the increased risk appeared to be more significant in females (OR 1.91; 95% CI 1.16–3.16; P = 0.001). But the significance only appeared in females under Bonferroni correction. No significant differences were detected for other SNPs (T4336C, G5460A, G9055A, and G13708A). Individual haplotype composed of 4336T-5460G-9055G-10398A-13708G was found to be associated with protective effect regarding PD (P = 0.0025). The haplotypes 4336T-5460G-9055G-10398G-13708G and 4336T-5460G-9055G- 10398A-13708G were more significantly associated in females (P = 0.0036 for risk and P = 0.0006 for protective effects). These data suggest that the A10398G and two haplotypes coupled with 10398A or 10398G are closely associated with susceptibility to PD in a northern Chinese population. This association demonstrated a female genetic distribution bias.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • HUMAN MITOCHONDRIAL DNA HAPLOGROUP J in EUROPE and NEAR EAST M.Sc
    UNIVERSITY OF TARTU FACULTY OF BIOLOGY AND GEOGRAPHY, INSTITUTE OF MOLECULAR AND CELL BIOLOGY, DEPARTMENT OF EVOLUTIONARY BIOLOGY Piia Serk HUMAN MITOCHONDRIAL DNA HAPLOGROUP J IN EUROPE AND NEAR EAST M.Sc. Thesis Supervisors: Ph.D. Ene Metspalu, Prof. Richard Villems Tartu 2004 Table of contents Abbreviations .............................................................................................................................3 Definition of basic terms used in the thesis.........................................................................3 Introduction................................................................................................................................4 Literature overview ....................................................................................................................5 West–Eurasian mtDNA tree................................................................................................5 Fast mutation rate of mtDNA..............................................................................................9 Estimation of a coalescence time ......................................................................................10 Topology of mtDNA haplogroup J....................................................................................12 Geographic spread of mtDNA haplogroup J.....................................................................20 The aim of the present study ....................................................................................................22
    [Show full text]
  • Ancient Mitochondrial DNA from Pre-Historic
    Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-30-2011 Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt Jeremy R. Newton Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Newton, Jeremy R., "Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt" (2011). Masters Theses. 5. http://scholarworks.gvsu.edu/theses/5 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. ANCIENT MITOCHONDRIAL DNA FROM PRE-HISTORIC SOUTH- EASTERN EUROPE: THE PRESENCE OF EAST EURASIAN HAPLOGROUPS PROVIDES EVIDENCE OF INTERACTIONS WITH SOUTH SIBERIANS ACROSS THE CENTRAL ASIAN STEPPE BELT A thesis submittal in partial fulfillment of the requirements for the degree of Master of Science By Jeremy R. Newton To Cell and Molecular Biology Department Grand Valley State University Allendale, MI April, 2011 “Not all those who wander are lost.” J.R.R. Tolkien iii ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to every person who has motivated, directed, and encouraged me throughout this thesis project. I especially thank my graduate advisor, Dr.
    [Show full text]
  • Mitochondrial DNA Haplogroups Observed in Iraqi Population
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 Mitochondrial DNA Haplogroups Observed in Iraqi Population Nihad A.M. Al-Rashedi1, Mohammed A. Jebor2, Talib AH Mousa3, Ali H. Al-Saadi4 1, 3 Science College- Muthanna University; 2, 4Science Colleges- Babylon University Abstract: Mitochondrial DNA hypervariable regions I and II of control region were sequenced from 100 random healthy unrelated individuals of three sequential generations belong to the Arab ethnic of Iraqi population. The aim of this study was to detection the mtDNA haplotypes and classifying it into mtDNA haplogroups will be useful in forensic genetics applications and determining the Iraqi population history. The sequence variation within D-loop control region were analyzed the composition of haplogroups that showed high frequency of haplogroups U, H, J,M, D,T and N (18%, 14%,10%, 9%, 7%, 7% and 7%, respectively, moderate frequency of haplogroups L and I was (4%) and B, A, R and K (2%), and low frequency of haplogroup pre-HV (1%) . This study was indicated lack of V, P, Y, X, O, Z, Q, G, E and C haplogroups. Keywords: mitochondrial DNA, haplogroups, DNA Sequencing, Arabic Iraqi population 1. Introduction find it http://mtmanager.yonsei.ac.kr that enables automatically estimate the most mtDNA haplogroups Iraq is located in the Middle East which bordered by Saudi according to control‐region mutation variations and scanning Arabia, Iran, Jordan, Kuwait and Turkey. The Iraqi of similar sequences from the database which includes over population consists of 75–80% Arabs and 20-25% others.
    [Show full text]
  • Eurasian and Sub-Saharan African Mitochondrial DNA Haplogroup Influences Pseudoexfoliation Glaucoma Development in Saudi Patients
    Molecular Vision 2011; 17:543-547 <http://www.molvis.org/molvis/v17/a62> © 2011 Molecular Vision Received 24 January 2011 | Accepted 14 February 2011 | Published 19 February 2011 Eurasian and Sub-Saharan African mitochondrial DNA haplogroup influences pseudoexfoliation glaucoma development in Saudi patients Khaled K. Abu-Amero,1 Vicente M. Cabrera,2 José M. Larruga,2 Essam A. Osman,1 Ana M. González,2 Saleh A. Al-Obeidan1 1Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 2Área de Genética. Departamento de Parasitología, Ecología y Genética. Facultad de Biología, Universidad de La Laguna (ULL). Avenida Astrofísico Francisco Sánchez, s/n. 38206 La Laguna (Tenerife), Spain Purpose: To investigate whether different mitochondrial DNA (mtDNA) haplogroups have a role on the development of pseudoexfoliation glaucoma (PEG) in the Saudi Arab population. Methods: The mtDNA regulatory region and coding regions comprising mtDNA haplogroup diagnostic polymorphisms were sequenced in patients with PEG (n=94), healthy matched controls (free of PEG; n=112) and a healthy Saudi Arab population group (n=810). Results: The Eurasian haplogroup T and the Sub-Saharan African Haplogroup L2 confer susceptibility to PEG, whereas the Eurasian haplogroup N1 was associated with reduced risk to develop PEG in the Saudi Arab population. Conclusions: Mitochondrial haplogroups T and L2 may play a role in the development of PEG in the Saudi Arabian population. Pseudoexfoliation (PEX) syndrome is a generalized variants in the Lysyl oxidase-like 1 (LOXL1) autosomal gene. disorder of the extracellular matrix and currently represents This association was first detected in Nordic European the most commonly identified specific cause of open-angle samples [7] and, since then, confirmed in samples with broad glaucoma [1].
    [Show full text]
  • Analysis of Y-Chromosome Polymorphisms in Pakistani
    ANALYSIS OF Y-CHROMOSOME POLYMORPHISMS IN PAKISTANI POPULATIONS Thesis submitted to the Sindh Institute of Medical Sciences for the degree of Doctor of Philosophy. BY Sadaf Firasat Centre of Human Genetics and Molecular Medicine Sindh Institute of Medical Sciences Sindh Institute of Urology and Transplantation (SIUT) Karachi, Pakistan 2010 TABLE OF CONTENTS Title page Acknowledgements ii List of Tables iii List of Figures iv Summary vi Introduction 1 Literature Review 19 Materials and Methods 34 Results Phylogeography of Pakistani ethnic groups. 51 Comparison between the Pakistani and Greek populations 73 Discussion 86 Comparison within Pakistan 88 Comparison between the Pakistani and Greek population 94 Comparison with world populations 98 Insight in to populations origins 111 Conclusions 121 References 122 Appendix a i ACKNOWLEDGEMENT I thank Prof. Dr. Syed Qasim Mehdi H.I. S.I., for his support, encouragement and for providing all the facilities for doing scientific work in his laboratory. The work presented in this thesis was done under the supervision of Dr. Qasim Ayub T.I. It is great pleasure for me to acknowledge the keen interest, advice, patient guidance and kindness that I have received from him during the course of this work. I would like to thank Dr. Shagufta Khaliq, (PoP), for teaching all the molecular genetics lab techniques and also to Dr Aiysha Abid for comments on this manuscript and suggestion for its improvement. I am also grateful to Mrs. Ambreen Ayub for her help in making the contour map. I thank my colleague Ms. Sadia Ajaz for her help and cooperation in proof reading the thesis.
    [Show full text]
  • Carriers of Mitochondrial DNA Macrohaplogroup L3 Basal Lineages Migrated Back to Africa from Asia Around 70,000 Years Ago Vicente M
    Cabrera et al. BMC Evolutionary Biology (2018) 18:98 https://doi.org/10.1186/s12862-018-1211-4 RESEARCHARTICLE Open Access Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago Vicente M. Cabrera1* , Patricia Marrero2, Khaled K. Abu-Amero3,4 and Jose M. Larruga1 Abstract Background: The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results: The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E.
    [Show full text]
  • Genetic Affinity Between the Kamsui Speaking Chadong and Mulam
    Journal of Systematics and Evolution 51 (3): 263–270 (2013) doi: 10.1111/jse.12009 Research Article Genetic affinity between the Kam‐Sui speaking Chadong and Mulam people 1Qiong‐Ying DENG*y 2Chuan‐Chao WANGy 1Xiao‐Qing WANGy 2Ling‐Xiang WANG 2Zhong‐Yan WANG 2Wen‐Jun WU 2Hui LI* the Genographic Consortium‡ 1(Department of Anatomy, Guangxi Medical University, Nanning 530021, China) 2(State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China) Abstract The origins of Kam‐Sui speaking Chadong and Mulam people have been controversial subjects in ethnic history studies and other related fields. Here, we studied Y chromosome (40 informative single nucleotide polymorphisms and 17 short tandem repeats in a non‐recombining region) and mtDNA (hypervariable segment I and coding region single nucleotide polymorphisms) diversities in 50 Chadong and 93 Mulam individuals. The Y chromosome and mtDNA haplogroup components and network analyses indicated that both Chadong and Mulam originated from the admixture between surrounding populations and the indigenous Kam‐Sui populations. The newly found Chadong is more closely related to Mulam than to Maonan, especially in the maternal lineages. Key words East Asian population, genetic structure, mitochondrial DNA, Tai‐Kadai, Y chromosome. Chadong dialect is a newly discovered Kam‐Sui and Mulam languages are both Kam‐Sui languages language spoken by some 20 000 people, mainly in spoken mainly in northern Guangxi by Maonan and Chadong Township, Lingui County, northeastern Mulao people, respectively (Li, 2001; Anthony et al., Guangxi Zhuang Autonomous Region, China. Accord- 2008).
    [Show full text]