New Mineral Names*

Total Page:16

File Type:pdf, Size:1020Kb

New Mineral Names* American Mineralogist, Volume 82, pages 430-433, 1997 NEW MINERAL NAMES* JonN L. Jenrnonrt Nmolar N. PnnrsBvr2 ANDANonnw C. Ronnnrs3 'Department of Earth Sciences,University of Waterloo, Waterloo, Ontario N2L 3G1, Canada '?IGREMRAN, RussianAcademy of Sciences,Moscow 10917,Staromonetnii 35, Russia rGeological Survey of Canada,601 Booth Street,Ottawa, Ontario KIA 0G1, Canada Benauite* larite group. Vestnik Moscow Univ., Ser. 4 Geol., No. K. Walenta, W.D. Birch, PJ. Dunn (1996) Benauite, a 2, 54-60 (in Russian) new mineral of the crandallite group from the Clara Flame photometry (Li,O, K,O, Na,O) and electron mi- mine in the central Black Forest. Germanv. Chem. croprobeanalyses gave SiO, 64.40,2rO, 1.55,FeO 0.45, Erde.56.I7l-176. MnO 8.78, MnrO. 1.13 (Mn'*/IMn3* from the crystal Electron microprobe analysis gave SrO 12.35, PbO sffucturedetermination), ZnO 15.51, Y,O. 1.51, Yb,O. 2.79, BaO 4.32, CaO 0.07, K,O 0.07, CuO 0.03, ZnO 0.54,K,O 6.16,Na,O 0.61,Li,O 1.10,sum 101.14wtVo, 0.07, Al,O. 0.26, Fe,O.40.85,P,O5 18.53,As,O, 0.78, corresponding to K, *(Ko.uN4,ronoro)>,.(Mnl{rMr{luYo't SO. 6.79, HrO by difference 13.09,sum 100 wtqo, cor- Zrn,rFeo, o)rr.o @nr rrLto,) t *Si,, -O.u. Occursas aggegates responding to (SrourBao,BboorCsoo,&u,)ro.€€r.Aloo.)rrn. to 40 x 50 mm, and as single grains; dark blue, dirty [(PO.),or(SOo)008(AsOo)oo"]rroo(OH,HrO)8.. Occurs as blue, or violet-brown color, translucent, vitreous luster, yellow to brown radial aggregates,up to 3 mm in diam- brittle, light blue streak, no cleavage,basal parting, Il : eter, consisting of scaly crystals flattened on (0001) and 4.5, VHN,oo: 423, D-"^": 2.96(2),D*n: 2.978 glcm' >1 mm in length. Transparentto translucent,vitreous to for Z : 2; insoluble in hot HCI but readily soluble in resinous luster, yellowish streak, brittle, perfect {0001} warm HE Optically uniaxial negative <o : 1.590, e : cleavage, conchoidal fracture, H : 3lz, D^."" = 3.65(5), 1.586; strongly pleochroic, from light blue (E) to light D."," : 3.648 g/cm3.Optically uniaxial negative or biaxial violet (O). The infrared spectmm has an intense absorp- with 2Vup to 20', e : 1.862(5),a : 1.872(5),E : nearly tion band at 1030 cm ' attributable to Si-O bonds, and a colorless, O_= yellow. Tiigonal symmetry, space group nilrow band at 795 cm' characteristicfor ring silicates. probably R3m by analogy with beudantite; 6 : 7.28(2), Single-crystalX-ray structurestudy (R : 0.036) indicated c : 16.85(4) A as calculated from an X-ray pattern (57 hexagonalsymmety, spacegroup P6/mcc, a: 10.218(4), mm, FeKa radiation)with strongestlines of 5.88(100,101), c = 14.292(3) A. The powder pattern (diffractometer, 3.06(90,11 3), 2.96(s0,r0s,2U), 2.8 1 (s0,006), 2.s3(s0,204), CuKcr radiation, 35 lines given) has strongest lines of 2.25(ffi,lU ), 1.969(50,303), and I .820 A (50,I 18,220,216).4. | 5(45,1 l2), 3.75 (5 0,202), 3.25 (100,21 1,203), and 2.5 4 5 The mineral is associatedwith fluorite, goethite, and (s2,220). kidwellite. The new name is for a locality near the Clara The mineral was found in a boulder of pegmatite in mine. Type material is in the Institut fiir Mineralogie und glacial moraine at the Dara-i-Pioz alkaline massif, Tien Kristallchemie der Universitiit Stuttgart,Germany, and in Shan, Tajikistan. The boulder consists of quartz and mi- the Museum of Victoria. Melbourne. Australia. crocline with minor aegirine, tadzhikite-(Y), cesium ku- Discussion. Although the authors give the simplified pletskite, hyalotekite, betafite, and polylithionite. The formula as SrFe.(POo),(OH,HrO)6and the mineral was new nilme is for V.D. Dusmatov, in recognition of his approvedby the CNMMN on this basis, the composition geological and mineralogical work on the relevant massif. is not sufficiently PO* rich to fall within the field appro- The mineral is in the osumilite group and has a compo- priated for such compositions by Scott's IMA-approved sitional similarity to darapiosite,differing notably in the nomenclaturesystem (Am. Mineral.,72, 178-187, 1987). lower Li content and predominanceof Zn over Mn. Dus- Benauite thus is an intermediate member, analogous to matovite may be the unnamed mineral of Nadezhina et corkite and beudantite,and is compositionally the Sr an- al. (Am. Mineral., 77, 45I-452, 1992). Type material is alog of corkite, i.e., ideally SrFe.(PO.,SO"),(OH,H,O)6.in the Museum of the Ilmen State Preserve,Miass, Rus- J.L.J. sia. N.N.P. Dusmatovite* Ferriphlogopite L.A. Pautov, A.A. Agakhanov,E.V. Sokolova,K.I. Ig- M.F Brigatti, L. Medici, L. Poppi (1996) Reflnement of natenko (1996) Dusmatovite, a new mineral of the mi- the structure of natural ferriphlogopite. Clays Clay Minerals, 44(4), 540-545 * Before publication, minerals marked with an asterisk were approved by the Commission on New Minerals and Mineral Elecffon microprobe and single-crystal X-ray structure Names, International Mineralogical Association. studv of two mica crvstals from an alkali-carbonaticcom- 0003-004x/97l0304-0430$05.00 430 JAMBOR ET AL.: NEW MINERAL NAMES 431 plex near Tapira, Minas Gerais,Brazll, gave compositions Strongest lines of the X-ray powder p3ttern (Nikishova of (KonnNaoo,)r, *(Mgr r. FefrlrFeflf;rTionr)>,ee[(Fe8j5si3 0s):4 m et al., 1992) are 5.88(37,020),470(54,210), 4.21(40,130), O,o,r](OH), ,nFooo and K, or(Mg,u.FefrjoFefij,Mtro o,)r. oo 3.01(25,246), 2.915(100,330), and 2.354(30,420). Nu- [(FefidrSi.n.)roooO,0,, XOH), ,.Fnor.The respectivecrystals merous weaker lines, the most intense of which are at are of the lM polytype, space group C2lm, a : .5.362, 2.946(14,040) and 2.878(6,141), distinguish the pattern 5.3649,b : 9.288,9.2924, c : 10.321,10.3255 A, g : from that of canasite. Data published for mineral IMA 99.99,99.988, R : 0.031,0.025. Fe3* substitutes for Si No. 94-050 indicate that frankameniteis biaxial negative, within the tetrahedralsites, and the Fe distribution is fully a : 1.536,B : 1.539,1 : 1.542,2V-"" : 70, 2V."'.: ordered. 89.8'.N.N.P. Discussion. The composition correspondsto the Fe3t analog of biotite or the Mg,* analog of ferri-annite. The Gottardiite* name teffaferriphlogopite has also been used to indicate E. Galli, S. G.Yezzalinl A. Albeti (1996) Gor the presenceof Fe3" in micas in this compositionalrange, Quartieri, tardiite, a new high-silica zeolite from Antarctica: The but neither feniphlogopite nor tetraferriphlogopite is an ap- natural counterpafi of synthetic NU-87. Eur. J. Min- proved name. See also the discussion, concerning tet- eral.. 8. 687-693. raferriphlogopite,i\ Am. Mineral., 81, 1517-1518,1996. J.L.J. Electron microprobe analysis gave SiO, 69.23, AlrO. 9.40, Fe,O. 0.10, MgO 1.24, CaO 2.61, SrO 0.04, BaO 0.03, Na,O 0.'17, K,O 0.08, H,O (TGA) 16.44, sum Frankarnenite* lffi .00 wt%o,corresponding to (Na, *Ko,r)rr rol\4g.,.(Cao* L.V. Nikishova, K.A. Lazebnik, I.V. Rozhdestvenskaya, Srn*Bao or)ro no(Si,, r, rAl,8 r.Feo,.)r,.u o.Orrr.92. 80HrO, sim- N.N. Emelyanova,Yu.D. Lazebnik (1996) Frankamen- plified as Na.Mg.CarSi tnA'ltso21193HrO.The DTG curve ite K.Na.Ca.(Si,rO.o)F.(OH).HrO-A new mineral, the shows a broad band with two peaks at 121 and 115 "C, triclinic analog of canasite from charoitites. Zapiski suggestingalmost continuous loss of HrO, and complete Vseross. Mineral. Obshch., 125(2), 106-108 (in rehydration occurs spontaneouslyin samplesafter heating Russian). to at least 800 'C. The mineral occurs as thin lamellae, Twelve electron microprobe analyses,with F and HrO elongate [100] or pseudohexagonal,typically in subpar- by wet chemistry, gave a mean and range of NarO 6.93 allel (001) or wedge-shapedaggregates. Transparent, col- (6.15-7.60), K,O 10.53(9.83- 1l. I I ), CaO 21.62(20.90- orless to light straw, brittle, FI not determinable, con- 22.23), SrO 0.23 (0.05-0.40), MgO 0.07 (0.02-0.12), choidal to irregular fracture, perfect {001} cleavage, : MnO 0.38 (0.20-0.54),FeO 0.13 (0.04-0.22),SiO,55.06 nonfluorescent,D-""" 2.14(4),D*r: 2.16 glcm'for Z (54.11-55.71),H,O 2.00(1.98-2.10), F 4.10(3.12-4.20), : l. Maximum crystal size is 0.3 x 0.2 x 0.02 mm; sum 101.05wtEo, corresponding to Krn.Narn.(Ca.o.Mnoor)observedforms are {001J and minor {0T0}. {140}, and : : (Si,rO.n)Fr8.(OH),.r.0.79HrO. Occursas lathstypically I {110}. Optically biaxial negative,ct 1.480(2), B = <60, : : cm and rarely to 15 cm in length, elongate[001], showing r.48s(2),t r.486(2),2v-.,": ZV*n 48', X : : prismatic and Grayishlilac, bluish b, Y a, Z c. Single-crystal X-ray study indicated {100}, {010}, {110}. - gray, or light green color, white streak, viffeous luster, orthorhombic symmetry, space grortp C^mca, a : : perfect {010} and {100} cleavages,microtwinned on 13.698(2),b 25.213(3),c 22.660(2)A.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Glasses and Glass Ceramics for Medical Applications
    Glasses and Glass Ceramics for Medical Applications Emad El-Meliegy Richard van Noort Glasses and Glass Ceramics for Medical Applications Emad El-Meliegy Richard van Noort Department of Biomaterials Department of Adult Dental Care National Research centre School of Clinical Dentistry Dokki Cairo, Egypt Sheffi eld University [email protected] Claremont Crescent Sheffi eld, UK r.vannoort@sheffi eld.ac.uk ISBN 978-1-4614-1227-4 e-ISBN 978-1-4614-1228-1 DOI 10.1007/978-1-4614-1228-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011939570 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Glass-ceramics are a special group of materials whereby a base glass can crystallize under carefully controlled conditions. Glass-ceramics consist of at least one crystalline phase dispersed in at least one glassy phase created through the controlled crystallization of a base glass.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Murun Massif, Aldan Shield of the Siberian Craton: a Simple Story for an Intricate Igneous Complex
    minerals Article 40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex Alexei V. Ivanov 1,* , Nikolay V. Vladykin 2, Elena I. Demonterova 1, Viktor A. Gorovoy 1 and Emilia Yu. Dokuchits 2 1 Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; [email protected] (E.I.D.); [email protected] (V.A.G.) 2 A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; [email protected] (N.V.V.); [email protected] (E.Y.D.) * Correspondence: [email protected]; Tel.: +7-395-242-7000 Received: 17 November 2018; Accepted: 16 December 2018; Published: 19 December 2018 Abstract: The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton has long been a kind of Siberian Mecca for geologists. It has attracted thousands of geologists, prospectors, and mineral collectors despite its remote location. It is famous for a dozen new and rare minerals, including the gemstones charoite and dianite (the latter is the market name for strontian potassicrichrerite), as well as for a range of uncommon alkaline igneous rocks. Despite this, the age of the Malyy Murun igneous complex and associated metasomatic and hydrothermal mineral associations has remained poorly constrained until now. In this paper, we provide extensive 40Ar/39Ar geochronological data to reveal its age and temporal history. It appears that, although unique in terms of rocks and constituent minerals, the Malyy Murun is just one of multiple alkaline massifs and lavas emplaced in the Early Cretaceous (~137–128 Ma) within a framework of the extensional setting of the Aldan Shield and nearby Transbaikalian region.
    [Show full text]
  • Micro-FTIR and EPMA Characterisation of Charoite from Murun Massif (Russia)
    Hindawi Journal of Spectroscopy Volume 2018, Article ID 9293637, 6 pages https://doi.org/10.1155/2018/9293637 Research Article Micro-FTIR and EPMA Characterisation of Charoite from Murun Massif (Russia) Maria Lacalamita Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy Correspondence should be addressed to Maria Lacalamita; [email protected] Received 21 December 2017; Accepted 20 February 2018; Published 3 April 2018 Academic Editor: Javier Garcia-Guinea Copyright © 2018 Maria Lacalamita. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Combined micro-Fourier transform infrared (micro-FTIR) and electron probe microanalyses (EPMA) were performed on a single crystal of charoite from Murun Massif (Russia) in order to get a deeper insight into the vibrational features of crystals with complex − structure and chemistry. The micro-FTIR study of a single crystal of charoite was collected in the 6000–400 cm 1 at room ° temperature and after heating at 100 C. The structural complexity of this mineral is reflected by its infrared spectrum. The analysis revealed a prominent absorption in the OH stretching region as a consequence of band overlapping due to a combination of H O and OH stretching vibrations. Several overtones of the O-H and Si-O stretching vibration bands were 2 − − observed at about 4440 and 4080 cm 1 such as absorption possibly due to the organic matter at about 3000–2800 cm 1.No significant change due to the loss of adsorbed water was observed in the spectrum obtained after heating.
    [Show full text]
  • 4Utpo3so UM-P-88/125
    4utpo3So UM-P-88/125 The Incorporation of Transuranic Elements in Titanatc Nuclear Waste Ceramics by Hj. Matzke1, B.W. Seatonberry2, I.L.F. Ray1, H. Thiele1, H. Trisoglio1, C.T. Walker1, and T.J. White3'4'5 1 Commission of the European Communities, Joint Research Centre, i Karlsruhe Establishment, ' \ 'I European Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Federal Republic of Germany. 2 Advanced Materials Program, Australian Nuclear Science and Technology Organization, Private Mail Bag No. 1, Menai, N.S.W., 2234, Australia. 3 National Advanced Materials Analytical Centre, School of Physics, The University of Melbourne, Parkville, Vic, 3052, Australia. Supported by the Australian Natio-al Energy Research, Development and Demonstration Programme. 4 Member, The American Ceramic Society 5 Author to whom correspondence whould oe addressed 2 The incorporation of actinide elements and their rare earth element analogues in titanatc nuclear waste forms are reviewed. New partitioning data are presented for three waste forms contining Purex waste simulant in combination with either NpC^, PuC>2 or An^Oo. The greater proportion of transuranics partition between perovskitc and ztrconoiite, while some americium may enter loveringite. Autoradiography revealed clusters of plutonium atoms which have been interpreted as unrcacted dioxide or scsquioxide. It is concluded that the solid state behavior of transaranic elements in titanate waste forms is poorly understood; certainly inadequate to tailor a ceramic for the incorporation of fast breeder reactor wastes. A number of experiments are proposed that will provide an adequate, data base for the formulation and fabrication of transuranic-bearing jj [i waste forms. ' ' 1 ~> I.
    [Show full text]
  • Transfers Young, Stephanie Lynne, Chalfont St
    The Journal of Gemmology2010 / Volume 32 / Nos. 1–4 The Gemmological Association of Great Britain The Journal of Gemmology / 2009 / Volume 31 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, E. A. Jobbins, J. I. Koivula, M. J. O'Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, A. T. Collins, S. Collins, B. Jackson, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, J. Greatwood, G. M. Green, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, Scottish – B. Jackson, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J. W. Harris (Glasgow), Prof. R. A. Howie (Derbyshire), E. A. Jobbins (Caterham), Dr J.
    [Show full text]
  • Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models
    Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models By Vladimir I. Berger, Donald A. Singer, and Greta J. Orris Open-File Report 2009-1139 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod/ Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov/ Telephone: 1-888-ASK-USGS Suggested citation: Berger, V.I., Singer, D.A., and Orris, G.J., 2009, Carbonatites of the world, explored deposits of Nb and REE— database and grade and tonnage models: U.S. Geological Survey Open-File Report 2009-1139, 17 p. and database [http://pubs.usgs.gov/of/2009/1139/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ii Contents Introduction 1 Rules Used 2 Data Fields 2 Preliminary analysis: —Grade and Tonnage Models 13 Acknowledgments 16 References 16 Figures Figure 1. Location of explored Nb– and REE–carbonatite deposits included in the database and grade and tonnage models 4 Figure 2. Cumulative frequency of ore tonnages of Nb– and REE–carbonatite deposits 14 Figure 3 Cumulative frequency of Nb2O5 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of RE2O3 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of P2O5 grades of Nb– and REE–carbonatite deposits 16 Tables Table 1.
    [Show full text]
  • A Glossary of Uranium- and Thorium-Bearing Minerals
    GEOLOGICAL SURVEY CIRCULAR 74 April 1950 A GLOSSARY OF URANIUM­ AND THORIUM-BEARING MINERALS By Judith Weiss Frondel and Michael F1eischer UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director WASHINGTON. D. C. Free on application to the Director, Geological Survey, Washington 25, D. C. A GLOSSAR-Y OF URANIUM- AND THORIUM-BEARING MINERALS By Judith Weiss Fronde! and Michael Fleischer CONTENTS Introduction ••oooooooooo••••••oo•-•oo•••oo••••••••••oooo•oo••oooooo••oo•oo•oo•oooo••oooooooo•oo• 1 .A. Uranium and thorium minerals oooo oo oo ......................... oo .... oo oo oo oo oo oooooo oo 2 B. Minerals with minor amounts of uranium and thorium 000000000000000000000000.... 10 C. Minerals that should be tested for uranium and thorium ...... 00 .. 00000000000000 14 D. Minerals that are non-uranium- or non-thorium­ bearing, but that have been reported to contain impurities or intergrowths of uranium, thorium, or rare-earth minerals oooooo•oo ............ oo ... oo .. oooooo'""""oo" .. 0000 16 Index oo ...... oooooo•oo••••oo•oooo•oo•oooo•·~· .. •oooo•oooooooooooo•oooooo•oooooo•oooo••oo•••oooo••• 18 INTRODUCTION The U. S. ·Geological Survey has for some time been making a systematic survey of da~ pertaining to uranium and thorium minerals and to those minerals that contain trace1 or more of uranium and thorium. This survey consists of collecting authoritative chemical, optical, and X-ray diffraction data from the literature and of adding to these data, where inadequate, by work in the laboratory. The results will he reported from time to time, and the authors welcome in- formation on additional data and names.
    [Show full text]
  • Investigations Into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite
    Investigations into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite. A thesis submitted for the fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Scott Alan McMaster B.Sc (App Chem) B.Sc (App Sci) (Hons) School of Applied Sciences College of Science, Engineering and Health RMIT University February 2016 II I Document of authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Scott A. McMaster February 2016 II Acknowledgements The research conducted in this thesis would not have been possible without the help of a number of people, and I would like to take this opportunity to personally thank them. Firstly, I’d like to thank my primary supervisor Dr. James Tardio; you have provided me with endless support and help throughout my 3rd year undergraduate research, honours and PhD candidature. Your enthusiasm, ideas, and patience have been essential in producing a thesis I can say I’m truly proud of. To Prof. Suresh Bhargava, I cannot thank you for your guidance and the opportunities that you have given me enough. You have taught me so much about being a good scientific communicator which I believe is one of the most valuable qualities I have gained throughout my candidature, for that I am extremely grateful.
    [Show full text]
  • NEW MINERAL NAMES* Mrcnlst- Fluscnnn
    AmericanMineralogist, Volume 63, pagesi,289-1291, 1978 NEW MINERAL NAMES* Mrcnlst- Fluscnnn Arsenbrackebuschite* X-ray study showsthe mineral to be tetragonal,space group probably : : : K. Abraham,K. Kautz, E. Tillmannsand K. Walenta(1978) I4'/ a, a 4.945,c 23.268A,Z 4, G calc2.97, meas (by Arsenbrackebuschite,PbdFe,Zn)(OH,HzO)(AsO,L, a ncw 2.8-2.9 suspension).The strongestX-ray lines(39 given)are (45X arsenatemineral. Neues Jahrb. Mineral. Monatsh.. 193-196. W. 4.828 l0l ), 4.1 7 1 (70x103), 3.349 (60X1 12), 2.598( t00Xl l6), Hofmeisterand E. Tillmanns(1976) Structural relations of arsen- 2.235(50Xll8), 1.453(60X00.t6, 136,22.t0). The mineral brackebuschiteand tsumcorite.Fortschr. Mineral.,54, Teil. l, 38. is colorlessto white,luster vitreous. It is optically uniaxial,negative, o : 1.653,e = 1.642(both +0.001). Microprobeanalysis of materialfrom Tsumebgave PbO 59.4, The mineraloccurs in anhedralgrains, 0.1-0.3 mm, in rodingite ZnO 3.1,FerO, (rotal Fe) 6.5,proo 0.17,AsrOu 30.5, sum99.67Vo, dikes from an ophiolite zone in the Taurus Mts., SW Turkey. leadingto the probableformula PbdFes+,Zn)(OH,H,OXAsO.),. Associatedminerals include vuagnatite, prehnite, hydrogrossular, The material from the Clara mine containssome Cu and some chlorite,and calcite. sulfate. The nameis for Mrs. ChantalSaro. M. F. Single-crystalstudy shows the mineralto be monoclinic,space gtoupP2/ m, a : 7.764, b = 6.045,c : 9.022A, = 112.5",Z : 2. 0 Charoite* G calc 6.54.X-ray powderdata are givenfrom the two localities; the strongestlines (Clara Mine, FeKa) are 4.90(60X0ll), 3.68 V.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    Uaranpecherz = uraninite, László 282 (1995). überbasisches Cuprinitrat = gerhardtite, Hintze I.3, 2741 (1916). überbrannter Amethyst = heated 560ºC red-brown Fe-rich quartz, László 11 (1995). Überschwefelblei = galena + anglesite + sulphur-α, Chudoba RI, 67 (1939); [I.3,3980]. uchucchacuaïte = uchucchacuaite, MR 39, 134 (2008). uddervallite = pseudorutile, Hey 88 (1963). uddevallite = pseudorutile, Dana 6th, 218 (1892). uddewallite = pseudorutile, Des Cloizeaux II, 224 (1893). udokanite = antlerite, AM 56, 2156 (1971); MM 43, 1055 (1980). uduminelite (questionable) = Ca-Al-P-O-H, AM 58, 806 (1973). Ueberschwefelblei = galena + anglesite + sulphur-α, Egleston 132 (1892). Uekfildit = wakefieldite-(Y), Chudoba EIV, 100 (1974). ufalit = upalite, László 280 (1995). uferite = davidite-(La), AM 42, 307 (1957). ufertite = davidite-(La), AM 49, 447 (1964); 50, 1142 (1965). U-free thorite = huttonite, Clark 303 (1993). U-galena = U-rich galena, AM 20, 443 (1935). ugandite = bismutotantalite, MM 22, 187 (1929). ughvarite = nontronite ± opal-C, MAC catalog 10 (1998). ugol = coal, Thrush 1179 (1968). ugrandite subgroup = uvarovite + grossular + andradite ± goldmanite ± katoite ± kimzeyite ± schorlomite, MM 21, 579 (1928). uhel = coal, Thrush 1179 (1968). Uhligit (Cornu) = colloidal variscite or wavellite, MM 18, 388 (1919). Uhligit (Hauser) = perovskite or zirkelite, CM 44, 1560 (2006). U-hyalite = U-rich opal, MA 15, 460 (1962). Uickenbergit = wickenburgite, Chudoba EIV, 100 (1974). uigite = thomsonite-Ca + gyrolite, MM 32, 340 (1959); AM 49, 223 (1964). Uillemseit = willemseite, Chudoba EIV, 100 (1974). uingvárite = green Ni-rich opal-CT, Bukanov 151 (2006). uintahite = hard bitumen, Dana 6th, 1020 (1892). uintaite = hard bitumen, Dana 6th, 1132 (1892). újjade = antigorite, László 117 (1995). újkrizotil = chrysotile-2Mcl + lizardite, Papp 37 (2004). új-zéalandijade = actinolite, László 117 (1995).
    [Show full text]