Dynamical Simulations of Terrestrial Planet Formation and Water Delivery

Total Page:16

File Type:pdf, Size:1020Kb

Dynamical Simulations of Terrestrial Planet Formation and Water Delivery Icarus 168 (2004) 1–17 www.elsevier.com/locate/icarus Making other earths: dynamical simulations of terrestrial planet formation and water delivery Sean N. Raymond,a,∗ Thomas Quinn,a and Jonathan I. Lunine b a Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA b Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85287, USA Received 6 August 2003; revised 12 November 2003 Abstract We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter’s mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1–4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100 + oceans of water (1 ocean = 1.5 × 1024 g), and vary in mass between 0.23M⊕ and 3.85M⊕. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1–2M⊕ protoplanets which can serve as the accretion seeds for 2 + M⊕ planets with large water contents. 2003 Elsevier Inc. All rights reserved. Keywords: Planetary formation; Extrasolar planets; Origin, Solar System; Cosmochemistry; Exobiology 1. Introduction implications for the abundance of habitable planets available for Terrestrial Planet Finder (TPF) to discover. There is a paradox in the definition of the habitable zone In the current paradigm of planet formation four dynam- with respect to the presence of liquid water. Imagine a planet ically distinct stages are envisioned (Lissauer, 1993): at the right distance from a star to have stable liquid wa- ter on its surface, supported by a modest greenhouse effect. Initial stage: Grains condense and grow in the hot nebular Nebular models and meteorite data suggest that the local disk, gradual settling to the mid-plane. The com- environment during the early formation of this planet was position of the grains is determined by the local sufficiently hot to prevent hydration of the planetesimals and temperature of the nebula. Gravitational instability protoplanets out of which the planet was formed (Morbidelli among the grains is resisted owing to continuous et al., 2000). That is, the local building blocks of this “hab- stirring by convective and turbulent motions. itable” planet were devoid of water. How, then, could this Early stage: Growth of grains to km-sized planetesimals occurs via pairwise accretion in the turbulent disk, planet acquire water and become truly habitable? Delivery of or possibly via gravitational instability under cer- water-laden planetesimals from colder regions of the disk is tain nebular conditions (Goldreich and Ward, 1973; one solution, but it implies that the habitability of extrasolar Youdin and Shu, 2002). Planetesimals initially have planets depends on the details of their final assembly, with low eccentricities (e) and inclinations (i) due to gas drag. * Corresponding author. Middle stage—oligarchic growth: “Focused merging”— E-mail address: [email protected] (S.N. Raymond). accretion with gravitationally augmented cross 0019-1035/$ – see front matter 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.icarus.2003.11.019 2 S.N. Raymond et al. / Icarus 168 (2004) 1–17 sections—leads to agglomeration of planetesimals embryos from outside its local region, including a few from into Moon-to Mars-sized “planetary embryos.” past 2.5 AU, which delivered the bulk of the Earth’s water. Possible runaway accretion and subsequent energy In this model the Earth accreted water since its formation, in equipartition (dynamical friction) may lead to po- the form of an early bombardment of asteroids and comets, larization of the mass distribution: a few large bod- a few large “wet” planetary embryos, and continual impacts ies with low e and i in a swarm of much smaller of small bodies over long timescales. This scenario explains planetesimals with high e and i. The timescale the D/H ratio of Earth’s water in the context of late-stage for this process correlates inversely with heliocen- planetary accretion. tric distance. Simulations of oligarchic growth by Morbidelli et al. (2000) assumed that oligarchic growth Kokubo and Ida (2000) suggest that planetary em- took place throughout the inner Solar System, with plane- bryos form in < 1Myrat1AU,in∼ 40 Myr at 5 tary embryos out to 4 AU. If the timescale for the formation AU, and in > 300 Myr past 10 AU. Since the gi- of Jupiter is less than that for planetary embryos in the outer ant planets are constrained to have formed within asteroid belt (past 2.5 AU), these initial conditions neglect 10 Myr from inferred lifetimes of gaseous disks Jupiter’s strong gravitational influence on the oligarchic around young stars (Briceño et al., 2001), embryos growth process in the asteroid belt, as well as planetesimal– could only have formed in the innermost Solar Sys- embryo interactions. Several other authors (e.g., Chambers, tem within that time. Thus, we expect that at the 2001; Chambers and Cassen, 2002) subsequently have nu- time of the formation of Jupiter, the inner terres- merically formed terrestrial planets, including both planetary trial region was dominated by ∼ 30–50 planetary embryos and planetesimals in their simulations. Their ini- embryos while the asteroid belt consisted of a large tial conditions often seem ad hoc, and not based on the state number of ∼ 1 km planetesimals. of the protoplanetary disk at the end of oligarchic growth, Note that this scenario is based on a relatively in particular the radial dependence of the planetary embryo low surface density model, and is somewhat in- formation timescale, which depends in turn on the surface consistent with the “core accretion” model for the density of the disk (Kokubo and Ida, 2002). formation of giant planets (Pollack et al., 1996), Chambers (2003) used a statistical Öpik–Arnold method which requires solid accretion cores of several to test planet formation in a number of scenarios, including Earth masses to form between 5 and 10 AU in less some which are similar to those we present in this paper. than 10 Myr, presumably by oligarchic growth. The The advantage of his statistical method is its low computa- formation timescale and masses of planetary em- tional expense relative to N-body simulations, allowing the bryos are sensitive to the surface density (Kokubo quick exploration of a large parameter space. Its drawback and Ida, 2002), and the detailed mass distribution in is the difficulty of implementing realistic dynamics. There- the disk at the time of Jupiter’s formation is unclear. fore, N-body simulations like those we present here may be Late Stage: Once runaway accretion has terminated due to used to “calibrate,” and thereby complement the statistical lack of slow moving material, planetary embryos simulations. and planetesimals gradually evolve into crossing In this paper, we characterize the process of terrestrial orbits as a result of cumulative gravitational per- planet formation and volatile delivery as a function of several turbations. This leads to radial mixing and giant parameters of the protoplanetary system. Our initial condi- impacts until only a few survivors remain. The tions attempt to realistically describe the protoplanetary disk timescale for this process is ∼ 108 yr. at the beginning of late-stage accretion, assuming a relatively low density protoplanetary disk in which oligarchic growth Until recently, a leading hypothesis for the origin of proceeds as described above. We do not limit ourselves to Earth’s water was the “late veneer” scenario, in which our own Solar System, and focus on the formation of planets the Earth formed primarily from local material, and ac- within the habitable zone of their parent stars. The parame- quired its water at later times from a large number of ters we vary in our simulations are cometary impacts. These impacts resulted in a hot water vapor atmosphere which condensed into oceans (Matsui (i) Jupiter’s mass, and Abe, 1986). However, the D/H ratio of three comets (ii) eccentricity, has been measured to be 12 times higher than the pro- (iii) semimajor axis, and tosolar value (Balsiger et al., 1995; Meier et al., 1998; (iv) time of formation, Bockelee-Morvan et al., 1998), and roughly twice the ter- (v) the density in solids of the protoplanetary disk, and restrial oceanic (roughly the chondritic) value. This implies (vi) the location of the snow line. that at most 10% of the Earth’s water came from a cometary source (Morbidelli et al., 2000). Section 2 describes our initial conditions and numerical Morbidelli et al. (2000) proposed that the bulk of the methods. Section 3 presents our results, which are discussed Earth’s water may have come from the asteroid belt in the in Section 4, including application to the NASA’s Terrestrial form of planetary embryos.
Recommended publications
  • Cosmochemistry Cosmic Background RadiaOn
    6/10/13 Cosmochemistry Cosmic background radiaon Dust Anja C. Andersen Niels Bohr Instute University of Copenhagen hp://www.dark-cosmology.dk/~anja Hauser & Dwek 2001 Molecule formation on dust grains Multiwavelenght MW 1 6/10/13 Gas-phase element depleons in the Concept of dust depleon interstellar medium The depleon of an element X in the ISM is defined in terms of (a logarithm of) its reducon factor below the expected abundance relave to that of hydrogen if all of the atoms were in the gas phase, [Xgas/H] = log{N(X)/N(H)} − log(X/H) which is based on the assumpon that solar abundances (X/H)are good reference values that truly reflect the underlying total abundances. In this formula, N(X) is the column density of element X and N(H) represents the column density of hydrogen in both atomic and molecular form, i.e., N(HI) + 2N(H2). The missing atoms of element X are presumed to be locked up in solids within dust grains or large molecules that are difficult to idenfy spectroscopically, with fraconal amounts (again relave to H) given by [Xgas/H] (Xdust/H) = (X/H)(1 − 10 ). Jenkins 2009 Jenkins 2009 2 6/10/13 Jenkins 2009 Jenkins 2009 The Galacc Exncon Curve Extinction curves measure the difference in emitted and observed light. Traditionally measured by comparing two stars of the same spectral type. Galactic Extinction - empirically determined: -1 -1 <A(λ)/A(V)> = a(λ ) + b(λ )/RV (Cardelli et al. 1999) • Bump at 2175 Å (4.6 µm-1) • RV : Ratio of total to selective extinction in the V band • Mean value is RV = 3.1 (blue) • Low value: RV = 1.8 (green) (Udalski 2003) • High value: RV = 5.6-5.8 (red) (Cardelli et al.
    [Show full text]
  • Cosmochemical Evidence for Astrophysical Processes During the Formation of Our Solar System
    Cosmochemical evidence for astrophysical processes during the formation of our solar system Glenn J. MacPhersona,1 and Alan Bossb aDepartment of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; and bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved October 25, 2011 (received for review June 22, 2011) Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially 60Fe, 26Al, and 41Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been “triggered” by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides.
    [Show full text]
  • An Evolving Astrobiology Glossary
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.
    [Show full text]
  • Cosmochemistry and the Origin of Life Proceedings of the NATO Advanced Study Institute Held at Maratea, Italy, June 1–12, 1981
    C. Ponnamperuma (Ed.) Cosmochemistry and the Origin of Life Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, June 1–12, 1981 Series: Nato Science Series C:, Vol. 101 For the first time in human history, developments in many branches of science provide us with an opportunity of formula ting a comprehensive picture of the universe from its beginning to the present time. It is an awesome reflection that the carbon in our bodies is the very carbon which was generated during the birth of a star. There is a perceptible continuum through the billions of years which can be revealed by the study of chemistry. Studies in nucleosynthesis have related the origin of the elements to the life history of the stars. The chemical elements we find on earth, HYdrogen, Carbon, Oxygen, and Nitrogen, were created in astronomical processes that took place in the past, and these elements are not spread throughout space in the form of stars and galaxies. Radioastronomers have discovered a vast array of organic molecules in the interstellar medium which have a bearing on prebiological chemical processes. Many of the molecules found so far contain 1983, VIII, 386 p. the four elements, C, N, 0, H. Except for the chem ically unreactive He, these four elements are the most abundant in the galaxy. The origin of polyatomic interstellar molecules is an unresolved problem. While we can explain the formation of some diatomic molecules Printed book as due to two atom collisions, it is much more difficult to form polyatomic molecules Hardcover by collisions between diatomic molecules and atoms.
    [Show full text]
  • Hydrogen and Nitrogen Cosmochemistry
    Ge 232 term paper, 1/7/13 Preprint typeset using LATEX style emulateapj v. 12/16/11 HYDROGEN AND NITROGEN COSMOCHEMISTRY: A REVIEW Adam Waszczak Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Ge 232 term paper, 1/7/13 ABSTRACT Hydrogen and nitrogen are both unique elements, showing substantial variation relative to each other and to their only secondary isotopes (deuterium and nitrogen-15). Yet compared to other elemental and isotopic systems|oxygen in particular|hydrogen and nitrogen are less-often examined in a comprehensive cosmochemical context. We review the cosmochemistry of these elements, starting with their cosmic and interstellar abundances, then the protosolar nebula and primitive (cometary and carbonaceous) bodies, and finally the planets of the solar system. We summarize the major observations which have thusfar provided key constraints on the cosmochemical evolution of H and N, and emphasize areas which would benefit from future investigation. 1. COSMIC ORIGINS AND ABUNDANCES from spectroscopic lines). However, neutral N2|the To first order, the universe consists primarily of hydro- long-assumed (and model-predicted) predominant form gen atoms formed during the Big Bang. Nucleosynthesis of nitrogen in the ISM (Herbst and Klemperer 1976)|is set a primordial isotopic ratio of ∼25 deuterium atoms notoriously difficult to measure directly due to a lack of 2 1 observable rotational and vibrational lines. The usual (D = H) per million H atoms. A basic description of + most interstellar material is the state of its hydrogen: ei- work-around is to observe N2H and infer the N2 ra- + tio from chemical modeling.
    [Show full text]
  • Exobiology in the Solar System & the Search for Life on Mars
    SP-1231 SP-1231 October 1999 Exobiology in the Solar System & The Search for Life on Mars for The Search Exobiology in the Solar System & Exobiology in the Solar System & The Search for Life on Mars Report from the ESA Exobiology Team Study 1997-1998 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1231 October 1999 EXOBIOLOGY IN THE SOLAR SYSTEM AND THE SEARCH FOR LIFE ON MARS Report from the ESA Exobiology Team Study 1997-1998 Cover Fossil coccoid bacteria, 1 µm in diameter, found in sediment 3.3-3.5 Gyr old from the Early Archean of South Africa. See pages 160-161. Background: a portion of the meandering canyons of the Nanedi Valles system viewed by Mars Global Surveyor. The valley is about 2.5 km wide; the scene covers 9.8 km by 27.9 km centred on 5.1°N/48.26°W. The valley floor at top right exhibits a 200 m-wide channel covered by dunes and debris. This channel suggests that the valley might have been carved by water flowing through the system over a long period, in a manner similar to rivers on Earth. (Malin Space Science Systems/NASA) SP-1231 ‘Exobiology in the Solar System and The Search for Life on Mars’, ISBN 92-9092-520-5 Scientific Coordinators: André Brack, Brian Fitton and François Raulin Edited by: Andrew Wilson ESA Publications Division Published by: ESA Publications Division ESTEC, Noordwijk, The Netherlands Price: 70 Dutch Guilders/ EUR32 Copyright: © 1999 European Space Agency Contents Foreword 7 I An Exobiological View of the
    [Show full text]
  • Problems of Planetology, Cosmochemistry and Meteoritica
    Problems of Planetology, Cosmochemistry and Meteoritica Problems of Planetology, Cosmochemistry and Meteoritica Alexeev V.A., Pavlova T.A., Kalinina G.K. sample. The submitted work presents the analysis Some features of the radiation history of results of the distribution of the cosmic-ray exposure ureilites ages and masses of ureilites in comparison with those for ordinary chondrites, as well as the analysis results Vernadsky Institute of Geochemistry and Analytical of Wilkening and Marti (1976) of the track studies of Chemistry RAS, Moscow ([email protected]) the Kanne ureilite. Abstract. The analysis of the distributions of the cosmic- ray exposure ages and masses of ureilites in comparison with those for ordinary chondrites, as well as the analysis of the track study results of the Kenna ureilite are presented. The characteristic features found in the distributions are most likely associated with the presence of a larger proportion of ureilites with the small cosmic-ray exposure ages among the ureilites with small sizes. This fact may be due to the faster delivery of small-sized meteoroids on the orbits crossing the Earth’s orbit, which in turn is associated with the more efficient transfer of the small bodies from the region of the asteroid belt in the resonances regions mainly in result of the action of "daily" component of the Yarkovsky effect. Keywords: ureilites, cosmic-ray exposure ages, particle tracks Introduction. Among the meteorites, the total number of which exceeded 70,000, the ureilites account are less than 0.8% - only 553 meteorites (https://www.lpi.usra.edu/meteor/metbull.php). The most of these meteorites (~55%) were found in the deserts of northwestern Africa.
    [Show full text]
  • Geochemistry and Cosmochemistry - Jonathan I
    GEOPHYSICS AND GEOCHEMISTRY – Vol. III - Geochemistry And Cosmochemistry - Jonathan I. Lunine GEOCHEMISTRY AND COSMOCHEMISTRY Jonathan I. Lunine Lunar and Planetary Laboratory, The University of Arizona, Tucson, USA Keywords: Geochemistry, cosmochemistry, platetectonics, carbon-silicate cycle, isotopes, radioisotopic dating, planet formation, impacts, Moon, volatiles Contents 1. Introduction to geochemistry and cosmochemistry 2 .Geologic processes on the Earth 3. Plate tectonics and the carbon-silicate cycle 4. Stable isotope climate studies 5. Cosmochemical materials 6. Principles of radioisotopic dating 7. Dynamical simulations of the growth of planets 8. Origin of the Moon—cosmochemical and dynamical constraints 9. Origin of water on the Earth and Mars 10 .Environmental geochemistry 11 The future of geochemistry and cosmochemistry Glossary Bibliography Biographical Sketch Summary The habitability of the Earth, that is, its ability to sustain life, over 4.5 billion years is a result of the cycling of volatiles such as water and carbon dioxide from the atmosphere to the crust and back. This is but one of many chemical cycles in the coupled crust and atmosphere, most of which are mediated in some way by life. Prior to the origin of life, the Earth evolved in much the same way as the other rocky planets, having been assembled from lunar-to-Mars-sized objects that grew from smaller solids in short periods of time (less than 10 million years). Dates for the origin of the Earth and major geological UNESCOand cosmochemical events are– obtainedEOLSS from the measurement of abundances of radioactive isotopes and their decay products. An exceptional event in the origin of the Earth, relative to the other terrestrial planets, is the formation of the Moon by giant impact, for which ample geochemical evidence exists.
    [Show full text]
  • Alexander Ruf Dissertation
    TECHNISCHE UNIVERSITÄT MÜNCHEN Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Dissertation TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Analytische Lebensmittelchemie Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Erwin Grill Prüfer der Dissertation: 1. apl. Prof. Dr. Philippe Schmitt-Kopplin 2. Prof. Dr. Michael Rychlik 3. Prof. Eric Quirico, PhD (Université Grenoble Alpes) Die Dissertation wurde am 06.12.2017 bei der Technischen Universität München ein- gereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 18.01.2018 angenommen. Do we feel less open-minded, the more open-minded we are? A tribute to sensitivity and resolution... Acknowledgments This work has been prepared at the Helmholtz Zentrum München in the research unit Analytical BioGeoChemistry of apl. Prof. Dr. Philippe Schmitt-Kopplin, in collaboration with the Chair of Analytical Food Chemistry at the Technical Uni- versity of Munich. In the course of these years, I have relied on the courtesy and support of many to which I am grateful. The success of this PhD thesis would not have been possible without help and support of many wonderful people. First of all, I would like to thank the whole research group Analytical BioGeo- Chemistry for a very friendly, informal, and emancipated working atmosphere that formed day-by-day an enjoyable period of residence - it has felt like freedom! Small issues like having stimulating lunch discussions or going out into a bar, friendly peo- ple could be found herein to setting up a balance to scientific work.
    [Show full text]
  • Introduction to Cosmochemistry
    Cambridge University Press 978-0-521-87862-3 - Cosmochemistry Harry Y. McSween and Gary R. Huss Excerpt More information 1 Introduction to cosmochemistry Overview Cosmochemistry is defined, and its relationship to geochemistry is explained. We describe the historical beginnings of cosmochemistry, and the lines of research that coalesced into the field of cosmochemistry are discussed. We then briefly introduce the tools of cosmochem- istry and the datasets that have been produced by these tools. The relationships between cosmochemistry and geochemistry, on the one hand, and astronomy, astrophysics, and geology, on the other, are considered. What is cosmochemistry? A significant portion of the universe is comprised of elements, ions, and the compounds formed by their combinations – in effect, chemistry on the grandest scale possible. These chemical components can occur as gases or superheated plasmas, less commonly as solids, and very rarely as liquids. Cosmochemistry is the study of the chemical composition of the universe and the processes that produced those compositions. This is a tall order, to be sure. Understandably, cosmo- chemistry focuses primarily on the objects in our own solar system, because that is where we have direct access to the most chemical information. That part of cosmochemistry encom- passes the compositions of the Sun, its retinue of planets and their satellites, the almost innumerable asteroids and comets, and the smaller samples (meteorites, interplanetary dust particles or “IDPs,” returned lunar samples) derived from them. From their chemistry, determined by laboratory measurements of samples or by various remote-sensing techniques, cosmochemists try to unravel the processes that formed or affected them and to fixthe chronology of these events.
    [Show full text]
  • Rachel L. Smith Curriculum Vitae
    Rachel L. Smith Curriculum Vitae (Updated, 12/29/20) ________________________________________________________________________ CURRENT EMPLOYMENT 2011-Present: Head, Astronomy & Astrophysics Research Laboratory Curator of Meteorites (since 2013) North Carolina Museum of Natural Sciences 121 West Jones Street, Rm. 3802B Raleigh, NC 27603 Associate Professor (since 2018 as Associate) Department of Physics and Astronomy Appalachian State University Boone, NC 28608 Email: [email protected]; [email protected] Phone: 919.707.8239 Website: https://naturalsciences.org/staff/rachel-smith Adjunct Professor (since 2017) Department of Physics and Astronomy, University of North Carolina at Chapel Hill Previous Academic/Research Appointments: (2011-2018) Assistant Professor, Dept. of Physics & Astronomy, Appalachian State University (2013-2016) Visiting Scholar, Dept. of Physics & Astronomy, UNC at Chapel Hill (2011) Postdoctoral Scholar, California Institute of Technology, Pasadena California Blake Research Group, Astronomy & Astrochemistry, Planetary Science (2005-2011) Graduate Student Researcher, UCLA (2008-2009) Teaching Fellow, Evolution of the Cosmos and Life, freshman cluster course, UCLA (2005-2007) Teaching Assistant, Solar System and Planets; Oceanography (2004-2005) Research Associate, VA Greater Los Angeles Healthcare System, Wadsworth Anaerobe Laboratory (2000-2002) Visiting Scientist, USGS, Astrogeology Team, Flagstaff, AZ (1996) Field Researcher, The Bellairs Research Institute, McGill University, St. James, Barbados
    [Show full text]
  • Fred J. Ciesla
    Fred J. Ciesla CONTACT INFORMATION Department of the Geophysical Sciences The University of Chicago Voice: (773) 702-8169 Fax: (773) 702-9505 [email protected] EDUCATION 2003 PhD in Planetary Sciences, University of Arizona, Tucson, AZ 1998 BA cum laude in Physics, Cornell University, Ithaca, NY EMPLOYMENT 2018- Chair, Department of the Geophysical Sciences, University of Chicago 2017- Professor, Department of the Geophysical Sciences, University of Chicago 2017- Professor, Enrico Fermi Institute, University of Chicago 2013-2017 Associate Professor, Enrico Fermi Institute, University of Chicago 2012-2017 Associate Professor, Department of the Geophysical Sciences, University of Chicago 2008-2012 Assistant Professor, Department of the Geophysical Sciences, University of Chicago 2006-2008 Postdoctoral Fellow, Department of Terrestrial Magnetism, Carnegie Institution of Washington 2004-2005 National Research Council Associate, NASA Ames Research Center HONORS AND AWARDS 2014 Elected Fellow of The Meteoritical Society 2011 Alfred O. C. Nier Prize from The Meteoritical Society 2003 Kuiper Memorial Award for Graduate Achievement, Department of Planetary Sciences, University of Arizona 2002 NASA Group Achievement Award for role in NEAR Shoemaker Mission PROFESSIONAL ACTIVITIES • Scientific Organizing Committee for European Southern Observatory Workshop The Innermost Regions of Protoplanetary Disks in 2018 • Scientific Organizing Committee for Workshop Habitable Worlds in 2017: A System Science Workshop in 2017 • Scientific Organizing Committee
    [Show full text]