The Battle for Supremacy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Sharp's 100-Year History: Company Information
Corporate Profile / Major Bases in Japan and Abroad 8 9 Name 26 3#! Europe Group Sales company in Australia Sharp Corporation 10 27 3#.: 11 Sales company in New Zealand Head Office 1 2 22-22 Nagaike-cho, Abeno-ku, 3 3%#, 28 Osaka 545-8522, Japan 4 Sales company in Canada 31 28 29 Tel: +81-6-6621-1221 5 7 3%# 6 29 Representatives 20 32 North & South Sales company in the US China Group 30 America Group Mikio Katayama, Chairman 3-#! 13 21 33 30 Takashi Okuda, President Manufacturing division of SEC Middle East and Africa Group 12 22 23 14 34 3,! Operations 31 16 24 Sharp Laboratories of America Consumer/Information Products 15 18 s!UDIO 6ISUALAND#OMMUNICATION%QUIPMENT 2ECURRENT%NERGY ,,# 17 ASEAN Group 32 Solar power plant development LCD color TVs, color TVs, projectors, DVD 19 company in the US recorders, Blu-ray Disc recorders, Blu-ray 25 3%-%8 Disc players, mobile phones, mobile 33 Manufacturing company in Mexico communications handsets, electronic dictionaries, calculators, facsimiles, 3#-%8 35 34 telephones Sales company in Mexico s(EALTHAND%NVIRONMENTAL%QUIPMENT 3"#$ 35 Refrigerators, superheated steam ovens, 26 Sales company in Brazil 27 microwave ovens, air conditioners, washing -AJOR/VERSEAS"ASES machines, vacuum cleaners, air purifiers, dehumidifiers, humidifiers, electric heaters, 3%% -AJOR"ASESIN*APAN 1 3%. 323 22 32( small cooking appliances, Plasmacluster European headquarters 10 Sales company in Sweden Sales company in Singapore Sales company in Hong Kong Ion generators, LED lights, solar-powered 19 35+ 3%2 3%3, 3%#4 11 LED -
Turkey Lake Feasibility Study
A Comprehensive Solar Energy Power System for the Turkey Lake Service Plaza Contract #: BDK75-977-18 7 January 2010 Project Research Team Charles J. Kibert, Ph.D., P.E., Principal Investigator S.A. Sherif, Ph.D. Robert Ries, Ph.D. Edward Minchin, Ph.D., P.E. Russell Walters, Ph.D., P.E. Lauren Hertel Consultant Al Simpler, President, Simpler Solar, Inc. Research Assistants Kevin Priest Jason Sanders Sean Snowden Srikanth Madala Milind Gholap 01/07/2010 iii EXECUTIVE SUMMARY The Florida Turnpike Enterprise (FTE) has the bold vision of maximizing the use of renewable energy in their operations and potentially supplying all the energy needs of their facilities via solar technologies. To determine the technical and financial feasibility of executing this vision, the FTE selected the Turkey Lake Service Plaza on the Florida Turnpike for a case study to explore this potential shift to renewable energy sources. A University of Florida research team collaborated with FTE and Florida Department of Transportation staff to examine contemporary solar technologies, particularly solar photovoltaic (PV) systems, for their potential to meet the energy needs of the Turkey Lake Service Plaza. The scope of the research included: 1. Evaluation of Solar Electric (PV), Solar Thermal (hot water), and Solar Lighting systems. 2. Assessment of the renewable energy generation potential of the Service Plaza. 3. Designing and planning of photovoltaic systems to determine the energy output. 4. Identification of innovative financing options. 5. Development of a marketing and education concept for the project. The research team concluded that by implementing the Net Zero Energy scenario, the annual electrical energy needs of all the facilities at the Turkey Lake Service Plaza could be met. -
CSPV Solar Cells and Modules from China
Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report......................................................... -
Countervailing Duty Administrative (NAICS 621) About Telemedicine Solar Cells from China
Federal Register / Vol. 85, No. 237 / Wednesday, December 9, 2020 / Notices 79163 service delivery for the healthcare DEPARTMENT OF COMMERCE days.2 On July 21, 2020, Commerce industry, and its importance has tolled the due date for these final results increased during the current pandemic. International Trade Administration an additional 60 days.3 On September 25, 2020, Commerce extended the Expanding the collection of data on [C–570–980] telemedicine use will support deadline for issuing the final results of measurement on changes in its adoption Crystalline Silicon Photovoltaic Cells, this review by 60 days, until November 4 during this unprecedented public health Whether or Not Assembled Into 27, 2020. emergency. SAS currently asks Modules, From the People’s Republic Scope of the Order of China: Final Results of ambulatory health care providers The products covered by the order are Countervailing Duty Administrative (NAICS 621) about telemedicine solar cells from China. A full Review; 2017 services in relation to patient visits. description of the scope of the order is This proposal will add a question about AGENCY: Enforcement and Compliance, contained in the Issues and Decision revenues from telemedicine services for International Trade Administration, Memorandum.5 hospitals (NAICS 622) and nursing Department of Commerce. homes (NAICS 623). Furthermore, to Analysis of Comments Received SUMMARY: The Department of Commerce standardize content across industries All issues raised in interested parties’ (Commerce) determines that and provide consistency for briefs are addressed in the Issues and countervailable subsidies are being respondents, the current telemedicine Decision Memorandum accompanying provided to producers/exporters of this notice. -
Michigan Stadium Solar Project
Michigan Stadium Solar Project: A Feasibility Study for Installation of a Photovoltaic System on Michigan Stadium Jenna Becsey Rachel Enoch Justin Gawlik Sarah Rutherford Jasem Yousuf Andy Berki, Project Sponsor EXECUTIVE SUMMARY: The University of Michigan has a great opportunity to become a leader in renewable energy and serve as an example for institutions nationwide. The proposal at hand is to install a photovoltaic system on the roofs of the new additions to Michigan Stadium. These new additions are slated to be completed in August of 2010 and represent a way for the university to strengthen tradition through innovation. The slogan used for the renovation is "building our future... strengthening our tradition," and installation of solar panels atop these additions would do just that. Not only would the university save money from energy savings, but it would also become a leader in sustainability, mitigate environmental impacts, and serve as a recruitment tool by generating great publicity. This report attempts to analyze the feasibility of a photovoltaic system atop these new additions. The tools used to create this report were energy analyses, cost-benefit analyses, environmental impact mitigation, social benefit analysis, and peer institution review. Most importantly, the payback period for each system was analyzed. Methodologies and calculations can be found in the appendices. The results show that a system of this size would be feasible, and would actually pay for itself over time. New technology has allowed solar panels to be made at a much lower cost than in the past and operate with greater levels of efficiency. The three panels that are best suited for Michigan Stadium are the Sharp 224 Watt Module, the Evergreen Solar ES-A-210 210 Watt Module, and SolarWorld's 175-Watt SunModule. -
DOE Solar Energy Technologies Program FY 2005 Annual
DOE Solar Energy Technologies Program Cover Photos (clockwise from lower right): On August 8, 2005, President George W. Bush visited the National Solar Thermal Test Facility at Sandia National Laboratories as part of his signing of the Energy Bill. R.J. Montoya Photo National Renewable Energy Laboratory researchers use a computer-controlled data acquisition system at the laboratory’s Outdoor Test Facility to characterize the performance and reliability of PV cells and modules. Jim Yost, PIX14094 A Cornell University student cleans the solar-powered rooftop of his team’s entry in preparation for the 2005 Solar Decathlon competition in Washington, D.C. Stefano Paltera/Solar Decathlon Global Solar Energy, a member of the Thin Film PV Partnership, produces PV material by depositing CIGS (copper indium gallium diselenide) on a lightweight, flexible polymide substrate in roll form. Global Solar Energy, PIX13419 The DOE Solar Energy Technologies Program Raymond A. Sutula, Manager, DOE Solar Energy Technologies Program The Solar Energy Technologies Program, within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), is responsible for developing solar energy technologies that can convert sunlight to useful energy and make that energy available to satisfy a significant portion of our nation's energy needs in a cost-effective way. The Solar Program supports research and development that addresses a wide range of applications, including on- site electricity generation, thermal energy for space heating and hot water, and large-scale power production. This is a great time to be involved with solar energy. Photovoltaic (PV) systems are being installed in the United States and around the world in unprecedented quantities. -
LG Modules World Class When It Comes to PID Resistance LG Solar
LG Solar - Quality & Reliability for the Future LG’s focus on quality control sits at the heart of our manufacturing philosophy. This quality-first philosophy has been developed through decades of creating top class electronic equipment. Today LG Electronics has a team of more than one hundred engineers working in solar research and development. Our module manufacturing plant located in Gumi, Korea uses the latest state-of-the-art equipment to manufacture solar panels that deliver product reliability and high performance for decades to come. It means every component from PV cells to glass and framing undergoes individual performance testing and separate quality control. If the quality of any component does not meet our industry leading standards, then it will not be used. LG’s Mono X™ range has been a huge success in the market and proven to be an investment in superior standards of design, manufacture, back up support and warranties. LG Solar’s high quality has been further proven when our previous model, LG Multi X, passed independent quality testing conducted by Fraunhofer Centre. Full details and results of the report are highlighted below where LG was proud to be one of four manufacturers to not show any degradation after being subjected to high voltage stress testing. LG Modules world class when it comes to PID resistance Outstanding quality and reliability make LG one of only four manufacturers from 13 leading module manufacturers to pass the German Fraunhofer Centre for Silicon Photovoltaics (CSP) high-voltage stress test with zero degradation. Early in 2012 the world renowned Fraunhofer Centre performed an accelerated high voltage test to characterize the PID susceptibility of commercial solar modules. -
A Circular Economy for Solar Photovoltaic System Materials: Drivers, Barriers, Enablers, and U.S
A Circular Economy for Solar Photovoltaic System Materials: Drivers, Barriers, Enablers, and U.S. Policy Considerations Taylor L. Curtis, Heather Buchanan, Ligia Smith, and Garvin Heath National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-74550 Operated by the Alliance for Sustainable Energy, LLC Revised April 2021 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 A Circular Economy for Solar Photovoltaic System Materials: Drivers, Barriers, Enablers, and U.S. Policy Considerations Taylor L. Curtis, Heather Buchanan, Ligia Smith, and Garvin Heath National Renewable Energy Laboratory Suggested Citation Curtis, Taylor L., Heather Buchanan, Ligia Smith, and Garvin Heath. 2021. A Circular Economy for Solar Photovoltaic System Materials: Drivers, Barriers, Enablers, and U.S. Policy Considerations. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-74550. https://www.nrel.gov.docs/fy21osti/74550. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-74550 Operated by the Alliance for Sustainable Energy, LLC Revised April 2021 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. -
Project Bond Focus Issue 4 | Project Bonds: New Energies – Solar
Project Bond Focus Issue 4 | Project Bonds: New Energies – Solar Project Bonds: New Energies – Solar Crédit Agricole CIB, a leader in the global Project Bond market, is authoring a series of articles covering key topics for issuers to consider. New Energies Solar Project Bonds The volume of Project Bonds issued for renewable energy Solar Project Bonds projects has steadily increased in recent years. (Global volume in $MM equivalent) 2,400 The Capital Markets opened its doors to renewable energy 2,200 1,896 2,000 projects with a wind Project Bond in 2003, followed by 1,780 solar Project Bonds a few years later in 2010. 1,800 1,600 1,446 1,284 1,421 These trail-blazing transactions allowed investors to gain 1,400 1,200 1,034 familiarity with the technologies, risks, and contractual 1,000 arrangements related to renewable assets. They also 800 paved the way for future issuances, as rating agencies 600 400 started publishing specific methodologies dedicated to this 258 200 newly accessible asset class. 0 2010 2011 2012 2013 2014 2015 2016 Renewables have grown to represent nearly 25% of power Source: PFI, CA CIB Project Bonds and 10% of total Project Bonds issued in just over a decade. In 2015, renewable energy projects Historically, the first solar Project Bond issuance was the accounted for $3.5BN of Project Bond issuances globally. €196MM Andromeda Finance offering for a 51MW utility- scale PV Italian solar project in December 2010. In 2011, Power Project Bonds the $702MM Project Bond for NextEra Genesis Solar, a (Global volume in $MM equivalent) single-site Concentrating Solar Power (CSP) project with a 20,000 capacity of 250MW in California, marked the opening of 15,054 the US Debt Capital Markets for solar projects. -
Sentimental Journey the Long, Winding Road to a Renewable Energy Future
EYE ON THE MARKET • ENERGY OUTLOOK 2016 Sentimental Journey The long, winding road to a renewable energy future J.P. MORGAN PRIVATE BANK On a sentimental journey, some of the images you recall seeing were real, some were based in reality but weren’t exactly what you thought they were, and others existed only in the realm of your imagination. This year’s topics include a status report on renewable energy penetration compared to some prior forecasts, a look at New York’s ambitious conservation and renewable energy plan, the latest on electric cars, the potential for more hydropower in the US, the commodity super-cycle and oil prices in 2017, and how utilities in sunny US states are changing their customer billing as distributed solar power grows. EYE ON THE MARKET • MICHAEL CEMBALEST • J.P. MORGAN Sentimental Journey: the long, winding road to a renewable energy future June 2016 The journey to a renewable energy future is taking longer than many analysts and agencies expected. How so? The solid line in the first chart shows the percentage of US primary energy1 derived from renewable sources, alongside some over-optimistic prior forecasts2. Similarly, most forecasts for nd electric vehicles (EVs and plug-in hybrid vehicles) have been too high as well, as shown in the 2 chart. The share of US primary energy coming from renewable Another generation of electric car projections out of sources, and some notable forecasts sync with reality, EV+PHEV sales as % of total car sales 50% Physicist Bent Sorensen 12% Deutsche Bank Google 2030 Clean ● US 40% Energy Plan 10% PwC ● Global Frost & Sullivan Bloomberg NEF Amory Lovins (RMI) 8% 30% IEA Carter Admin Roland Berger (solar only) Nat'l 6% 20% Renew. -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
Solar Power for the Veneto
Photovoltaics Rovigo solaR PRoject Rovigo solar farm and central inverter/transformer station 70 MW of solar power for the Veneto On a foggy November day, SunEdison Italy, its financial partners track record in utility-scale solar plants, using 840 km of cables, 50 km of conduits and more than 6 tons of and local officials inaugurated Europe’s largest solar farm in steel for the metal substructures and the like. Rovigo, Veneto. Hundreds of guests demonstrated the “The polycrystalline panels have been supplied by Canadian Solar, Trina Solar, Yingli and Solarfun,” importance of the project as a reference for its initiators, as well says Liborio Nanni, Country Manager at SunEdison Italia. The last modules were shipped by air cargo di- as a means to support local development. rectly from China, in order to stay within the deadline. “The Rovigo project is important for several reasons, not only for its size,” Pancho Perez, General Manager t first glance, the solar power plant is an exten- of SunEdison EMEA, points out. According to him, ded blue surface equalling a big inland lake in the solar farm is a reference for a quick and precise Asize. Having realised that the object is just a ve- project realisation, as it took only nine months from ry huge solar park, the passer-by can’t help seeing the the beginning of construction to the interconnection central inverter station, which manages the electricity in November 2010. produced and makes it compatible with the national “This milestone has been made possible with the grid. help of perfect timing for installation work and excel- Today, the Rovigo project is the largest European lent cooperation of the partners,” adds Perez, re- PV power plant – bigger than the 60 MW solar farm ferring first of all to financial partners MEMC and in Olmedilla, Spain, and the 50 MW project in SunEdison.