Is the Endâ•Flan Inquiry Concerning Stoic Philosophy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Chrysippus's Dog As a Case Study in Non-Linguistic Cognition
Chrysippus’s Dog as a Case Study in Non-Linguistic Cognition Michael Rescorla Abstract: I critique an ancient argument for the possibility of non-linguistic deductive inference. The argument, attributed to Chrysippus, describes a dog whose behavior supposedly reflects disjunctive syllogistic reasoning. Drawing on contemporary robotics, I urge that we can equally well explain the dog’s behavior by citing probabilistic reasoning over cognitive maps. I then critique various experimentally-based arguments from scientific psychology that echo Chrysippus’s anecdotal presentation. §1. Language and thought Do non-linguistic creatures think? Debate over this question tends to calcify into two extreme doctrines. The first, espoused by Descartes, regards language as necessary for cognition. Modern proponents include Brandom (1994, pp. 145-157), Davidson (1984, pp. 155-170), McDowell (1996), and Sellars (1963, pp. 177-189). Cartesians may grant that ascribing cognitive activity to non-linguistic creatures is instrumentally useful, but they regard such ascriptions as strictly speaking false. The second extreme doctrine, espoused by Gassendi, Hume, and Locke, maintains that linguistic and non-linguistic cognition are fundamentally the same. Modern proponents include Fodor (2003), Peacocke (1997), Stalnaker (1984), and many others. Proponents may grant that non- linguistic creatures entertain a narrower range of thoughts than us, but they deny any principled difference in kind.1 2 An intermediate position holds that non-linguistic creatures display cognitive activity of a fundamentally different kind than human thought. Hobbes and Leibniz favored this intermediate position. Modern advocates include Bermudez (2003), Carruthers (2002, 2004), Dummett (1993, pp. 147-149), Malcolm (1972), and Putnam (1992, pp. 28-30). -
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1 The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. – Marcel Proust A huge part of Philosophical Inquiry is learning how to see the world with new eyes. To accomplish this goal, you will be introduced to the “ten lenses of philosophical inquiry.” The ten lenses of philosophical inquiry are tools to help us critically engage with, and analyze ourselves, and the world around us. Like a pair of glasses, the ten lenses help to change our perception and give us the power to re-examine our reality. In this philosophical inquiry research project you will get introduced to each of the ten lenses so that you become comfortable using the lenses both inside and out of our class. You will also learn more about a philosopher, their philosophy and the lens of philosophical inquiry that they are most clearly connected to. Focus Question What are the ten lenses of philosophical inquiry, and what are some examples of how they are connected to the philosophies of different philosopher’s throughout history? Philosophical Inquiry Research Process 1) QUESTION - Develop the philosophical questions that you will use to drive your inquiry. 2) PLAN – Determine the types of sources that you will need to answer your questions. 3) GATHER EVIDENCE – Gather the information (textual, visual, quantitative, etc.) you need to explore and answer your questions. 4) ANALYZE – Analyze the answers to your questions, making sure to keep in mind the larger focus question guiding this inquiry. 5) COMMUNICATE CONCLUSIONS – Use evidence and reasons to write an organized (logically sequenced) explanation to the inquiry’s topic/focus question. -
A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry
Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2019 A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry Karina Bucciarelli Follow this and additional works at: https://scholarship.claremont.edu/scripps_theses Part of the Epistemology Commons, Feminist Philosophy Commons, and the Philosophy of Science Commons Recommended Citation Bucciarelli, Karina, "A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry" (2019). Scripps Senior Theses. 1365. https://scholarship.claremont.edu/scripps_theses/1365 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. A FEMINIST EPISTEMOLOGICAL FRAMEWORK: PREVENTING KNOWLEDGE DISTORTIONS IN SCIENTIFIC INQUIRY by KARINA MARTINS BUCCIARELLI SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE DEGREE OF BACHELOR OF ARTS PROFESSOR SUSAN CASTAGNETTO PROFESSOR RIMA BASU APRIL 26, 2019 Bucciarelli 2 Acknowledgements First off, I would like to thank my wonderful family for supporting me every step of the way. Mamãe e Papai, obrigada pelo amor e carinho, mil telefonemas, conversas e risadas. Obrigada por não só proporcionar essa educação incrível, mas também me dar um exemplo de como viver. Rafa, thanks for the jokes, the editing help and the spontaneous phone calls. Bela, thank you for the endless time you give to me, for your patience and for your support (even through WhatsApp audios). To my dear friends, thank you for the late study nights, the wild dance parties, the laughs and the endless support. -
Chapter Two Democritus and the Different Limits to Divisibility
CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is. -
Principles of Scientific Inquiry
Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis. -
Experiential & Inquiry-Based Learning with Youth in Non-Formal Settings
Working with youth in non-formal settings ensuring rich enrichment Experiential & Inquiry-based Learning with Youth in Non-formal Settings 4-H Science learning for youth can be deepened by building inquiry-based learning methods into programs and curricula. For over two decades of educational reform, science education has focused on inquiry as a method for learning and doing natural science in formal classrooms. When used to make sense of the natural world from within the discipline of science, inquiry-based learning is ‘scientific inquiry. ’ Non-formal program designers and practitioners are faced with decisions about which scientific inquiry methods to transfer from the formal classroom to the non-formal setting, which methods to adapt to better fit the non-formal learning needs of youth, and how to best prepare adults to facilitate scientific inquiry with youth. Why is this thinking important to 4-H staff and volunteers? Evaluation results indicate that inquiry-based methods support youth in Key Concepts their learning. Minner et al (2010) reviewed 138 evaluation studies and found that inquiry-based approaches in the science, engineering, technology ,and math Experiential learning: content areas had the largest effect sizes, or made the greatest positive Constructing learning through hands-on experiences that are difference, when there was an emphasis on active learning and involvement in highly social in nature. the investigative process (asking questions, designing investigations, collecting data, drawing conclusions, communicating findings). Hands-on experiences with Inquiry-based learning: Constructing learning through natural phenomena were also found to be associated with increased conceptual hands-on experiences that provide learning in the science content investigated. -
The Stoics and the Practical: a Roman Reply to Aristotle
DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in -
Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding
1740 - Treatise of Human Nature Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding Recall: Subject of confirmation = How scientific claims are justified. This assumes that they are capable of justification in the first place. Hume asks: Is there a rational basis for inductive inferences? Hume response: No! Consequence: To the extent that scientific claims are based on inductive inferences, they cannot be justified. Example: All observed ravens are black. Hume asks, Can we ever be justified in believing the conclusion? All ravens are black. Two types of objects of knowledge, according to Hume (I) Relations of ideas = Products of deductive (truth-preserving) Ex: 2 + 2 = 4 inferences; negation entails a contradiction. (II) Matters of fact = Products of inductive inferences; negation does Ex: All ravens are black. not entail a contradiction. Outline of Hume's Argument (1) Matters of fact can only be known through experience ("a posteriori"). (2) Therefore matters of fact can only be justified by recourse to experience. (3) But any attempt to do so is circular. ∴ There is no justification for inductive inferences. ASIDE 1. Hume is not just saying that we can never be certain about inductive inferences (i.e., we can never be 100% certain that all ravens are black). This would be uncontentious: Most people would agree that there's always room for error in making an inductive inference. However, most people would at the same time claim that we are justified in making (some) inductive inferences, even though they aren't 100% guaranteed to work (i.e., we think there are standards by which we can judge good inductive inferences from bad ones). -
An Introduction to Philosophy
An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so. -
Passionate Platonism: Plutarch on the Positive Role of Non-Rational Affects in the Good Life
Passionate Platonism: Plutarch on the Positive Role of Non-Rational Affects in the Good Life by David Ryan Morphew A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Classical Studies) in The University of Michigan 2018 Doctoral Committee: Professor Victor Caston, Chair Professor Sara Ahbel-Rappe Professor Richard Janko Professor Arlene Saxonhouse David Ryan Morphew [email protected] ORCID iD: 0000-0003-4773-4952 ©David Ryan Morphew 2018 DEDICATION To my wife, Renae, whom I met as I began this project, and who has supported me throughout its development. ii ACKNOWLEDGMENTS First and foremost, I am grateful to my advisors and dissertation committee for their encouragement, support, challenges, and constructive feedback. I am chiefly indebted to Victor Caston for his comments on successive versions of chapters, for his great insight and foresight in guiding me in the following project, and for steering me to work on Plutarch’s Moralia in the first place. No less am I thankful for what he has taught me about being a scholar, mentor, and teacher, by his advice and especially by his example. There is not space here to express in any adequate way my gratitude also to Sara Ahbel-Rappe and Richard Janko. They have been constant sources of inspiration. I continue to be in awe of their ability to provide constructive criticism and to give incisive critiques coupled with encouragement and suggestions. I am also indebted to Arlene Saxonhouse for helping me to see the scope and import of the following thesis not only as of interest to the history of philosophy but also in teaching our students to reflect on the kind of life that we want to live. -
Turns in the Evolution of the Problem of Induction*
CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them. -
The Inquiry Wheel, an Alternative to the Scientific Method. a View of The
Chemical Education Today Reports from Other Journals The Inquiry Wheel, an Alternative to the Scientific Method A View of the Science Education Research Literature by William R. Robinson For many years I have felt that the scientific method as entific inquiry emerged and led to the description of the presented in many textbooks was not how my colleagues in inquiry wheel illustrated in Figure 1 and discussed below. chemistry did research. Even so, when I wrote a general However, before we look at the inquiry wheel, I think chemistry text I was told to put in a description of the sci- it worth noting that the majority of the scientists interviewed entific method because it was expected. Now, Reiff, (38 of 52) identified the most important aspect of an in- Harwood, and Phillipson have developed a more satisfac- vestigation as being literature based. To them a worthwhile tory model of scientific inquiry, the inquiry wheel, based on investigation was one that crossed the boundary from the information gathered from practicing scientists. This model known to the unknown and a knowledge of the literature is described in their paper “A Scientific Method Based upon is important in identifying that boundary. Research Scientists’ Conceptions of Scientific Inquiry” (1) based on interview data described in “Scientists’ Concep- Stages of Scientific Inquiry tions of Scientific Inquiry: Voices from the Front” (2). As a result of their interviews (2), the investigators de- The informants in this research were 52 science faculty scribe the process used by scientists as they pursue research members in nine science departments (anthropology, biol- as a wheel with questions at the hub and various stages of ogy, chemistry, geography, geology, medical sciences, physics, the inquiry in a circular arrangement around the hub (1).