Diseases Caused by Nematodes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
JOURNAL of NEMATOLOGY Description of Heterodera
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-097 e2020-97 | Vol. 52 Description of Heterodera microulae sp. n. (Nematoda: Heteroderinae) from China a new cyst nematode in the Goettingiana group Wenhao Li1, Huixia Li1,*, Chunhui Ni1, Deliang Peng2, Yonggang Liu3, Ning Luo1 and Abstract 1 Xuefen Xu A new cyst-forming nematode, Heterodera microulae sp. n., was 1College of Plant Protection, Gansu isolated from the roots and rhizosphere soil of Microula sikkimensis Agricultural University/Biocontrol in China. Morphologically, the new species is characterized by Engineering Laboratory of Crop lemon-shaped body with an extruded neck and obtuse vulval cone. Diseases and Pests of Gansu The vulval cone of the new species appeared to be ambifenestrate Province, Lanzhou, 730070, without bullae and a weak underbridge. The second-stage juveniles Gansu Province, China. have a longer body length with four lateral lines, strong stylets with rounded and flat stylet knobs, tail with a comparatively longer hyaline 2 State Key Laboratory for Biology area, and a sharp terminus. The phylogenetic analyses based on of Plant Diseases and Insect ITS-rDNA, D2-D3 of 28S rDNA, and COI sequences revealed that the Pests, Institute of Plant Protection, new species formed a separate clade from other Heterodera species Chinese Academy of Agricultural in Goettingiana group, which further support the unique status of Sciences, Beijing, 100193, China. H. microulae sp. n. Therefore, it is described herein as a new species 3Institute of Plant Protection, Gansu of genus Heterodera; additionally, the present study provided the first Academy of Agricultural Sciences, record of Goettingiana group in Gansu Province, China. -
Plant-Parasitic Nematodes and Their Management: a Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed. -
Root-Parasitic Nematodes of Rice
Articlebibliographique ROOT-PARASITIC NEMATODES OF RICE Renaud FORTUNERand Georges MERNY ORSTOM, Laboratoire de Nématologie, B.P. TT 51, Abidjan, Côte d’Ivoire and ORSTOM, Laboratoire de Biologie des Sols, 70-74 route d’Aulnay, 93140 Bondy, France Geographicaldistribution of nematodes Hirschmanniella of which several species have associated with rice been observed associated with rice. H. oryzae is the most frequently encountered inal1 countries whererice is grown, except Europe. Another More than one hundred species of nematodes species, H. spinicaudata, iscommon inWest have been reported from upland and paddyrice Africa andhas been observed once inSouth in many countries (Tab. 1).Their frequency and America. In WestAfrica a geographical gradient importance are very variable and, in mostcases is observed in the distribution of both species : the existence of a parasitic relationship withrice H. spinicaudata is highly prevalent in the humid is probable but has not been demonstrated. countries ,like Ivory Coast whereas H. oryzae is Manyspecies of rootnematodes have been foundmostly in the Sahelian regions (North observed both in dry and irrigatedfields but very Senegal) ; a balanced mixture of both species is few species are found in both situations. Several observed in intermediategeographical areas surveys made by the authors in WestAfrica have (Gambia). shown that a relatively low number of species Ten recognizedspecies of Pratylenchus have are adapted to permanently flooded conditions. been identified parasitizing rice. The most fre- When the field is only temporarily flooded, the quent is P. brachyurus, rather common in Afri- number of species present is higherand the can upland rice fields, which has been observed nematode fauna tends to ressemble that observedonce in South America ; P. -
Oryza Glaberrima Steud)
plants Review Advances in Molecular Genetics and Genomics of African Rice (Oryza glaberrima Steud) Peterson W. Wambugu 1, Marie-Noelle Ndjiondjop 2 and Robert Henry 3,* 1 Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148 – 00100, Nairobi, Kenya; [email protected] 2 M’bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Ivory Coast; [email protected] 3 Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia * Correspondence: [email protected]; +61-7-661733460551 Received: 23 August 2019; Accepted: 25 September 2019; Published: 26 September 2019 Abstract: African rice (Oryza glaberrima) has a pool of genes for resistance to diverse biotic and abiotic stresses, making it an important genetic resource for rice improvement. African rice has potential for breeding for climate resilience and adapting rice cultivation to climate change. Over the last decade, there have been tremendous technological and analytical advances in genomics that have dramatically altered the landscape of rice research. Here we review the remarkable advances in knowledge that have been witnessed in the last few years in the area of genetics and genomics of African rice. Advances in cheap DNA sequencing technologies have fuelled development of numerous genomic and transcriptomic resources. Genomics has been pivotal in elucidating the genetic architecture of important traits thereby providing a basis for unlocking important trait variation. Whole genome re-sequencing studies have provided great insights on the domestication process, though key studies continue giving conflicting conclusions and theories. However, the genomic resources of African rice appear to be under-utilized as there seems to be little evidence that these vast resources are being productively exploited for example in practical rice improvement programmes. -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 10 PARIS, 2018-10 General 2018/187 New data on quarantine pests and pests of the EPPO Alert List 2018/188 International Conference - Xylella fastidiosa, an unpredictable threat? Technical and scientific breakthroughs in disease control (Valencia, ES, 2018-12-12/13) Pests 2018/189 First report of Spodoptera frugiperda in Mayotte 2018/190 First report of Spodoptera frugiperda in Réunion 2018/191 Anoplophora glabripennis found in Piemonte, Italy 2018/192 Aleurocanthus spiniferus found in Croatia 2018/193 First report of Earias roseifera in Italy 2018/194 Meloidogyne fallax found in the United Kingdom 2018/195 Meloidogyne chitwoodi found in Sweden 2018/196 Meloidogyne graminicola found in Lombardia, Italy 2018/197 Heterodera elachista found in Piemonte region, Italy Diseases 2018/198 Grapevine Roditis leaf discoloration-associated virus: addition to the EPPO Alert List 2018/199 First report of huanglongbing in Venezuela 2018/200 Update on the situation of huanglongbing in Argentina 2018/201 Eradication of Ralstonia solanacearum from Switzerland 2018/202 Erwinia amylovora found in Corse, France 2018/203 Update on the situation of Pantoea stewartii in Italy 2018/204 Phytophthora fragariae found in Sweden Invasive plants 2018/205 New invasive alien plant species recommended for regulation in the EPPO region 2018/206 Negative impacts of Prunus laurocerasus in deciduous forests in Switzerland 2018/207 Estimating the economic benefits of the biocontrol agent Ophraella communa for Ambrosia artemisiifolia 2018/208 Ambrosia artemisiifolia seed movement along roadsides 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 Web: www.eppo.int 75011 Paris E-mail: [email protected] GD: gd.eppo.int EPPO Reporting Service 2018 no. -
Nematoda: Heteroderidae)
Nematology, 2007, Vol. 9(4), 483-497 Morphological and molecular studies on Heterodera sacchari, H. goldeni and H. leuceilyma (Nematoda: Heteroderidae) Zahra TANHA MAAFI 1, Dieter STURHAN 2, Zafar HANDOO 3,MishaelMOR 4, ∗ Maurice MOENS 5 and Sergei A. SUBBOTIN 6,7, 1 Plant Pests and Diseases Research Institute, P.O. Box 1454-Tehran, 19395, Iran 2 c/o Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Nematologie und Wirbeltierkunde, Toppheideweg 88, 48161 Münster, Germany 3 Nematology Laboratory, Plant Sciences Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA 4 Department of Nematology, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, Israel 5 Agricultural Research Centre, Burg. Van Gansberghelaan 96, Merelbeke, 9820, Belgium 6 Plant Pest Diagnostic Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA 7 Centre of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow, 117071, Russia Received: 21 December 2006; revised: 12 March 2007 Accepted for publication: 13 March 2007 Summary – Heterodera sacchari, H. leuceilyma and H. goldeni are closely related members of the H. sacchari species complex, which is mainly characterised and distinguished from all other described Heterodera species by the presence of finger-like projections of the strongly developed underbridge in the vulval cone of the cysts. Males are rare in all three species and are described here in H. goldeni for the first time. Reproduction appears to be parthenogenetic. There are only minor morphological distinctions between the three species, particularly after our present studies have emended their original descriptions from various populations. -
New Cyst Nematode, Heterodera Sojae N. Sp
Journal of Nematology 48(4):280–289. 2016. Ó The Society of Nematologists 2016. New Cyst Nematode, Heterodera sojae n. sp. (Nematoda: Heteroderidae) from Soybean in Korea 1 1 1 1,2 2 2 1,2 HEONIL KANG, GEUN EUN, JIHYE HA, YONGCHUL KIM, NAMSOOK PARK, DONGGEUN KIM, AND INSOO CHOI Abstract: A new soybean cyst nematode Heterodera sojae n. sp. was found from the roots of soybean plants in Korea. Cysts of H. sojae n. sp. appeared more round, shining, and darker than that of H. glycines. Morphologically, H. sojae n. sp. differed from H. glycines by fenestra length (23.5–54.2 mm vs. 30–70 mm), vulval silt length (9.0–24.4 mm vs. 43–60 mm), tail length of J2 (54.3–74.8 mm vs. 40–61 mm), and hyaline part of J2 (32.6–46.3 mm vs. 20–30 mm). It is distinguished from H. elachista by larger cyst (513.4–778.3 mm 3 343.4– 567.1 mm vs. 350–560 mm 3 250–450 mm) and longer stylet length of J2 (23.8–25.3 mm vs. 17–19 mm). Molecular analysis of rRNA large subunit (LSU) D2–D3 segments and ITS gene sequence shows that H. sojae n. sp. is more close to rice cyst nematode H. elachista than H. glycines. Heterodera sojae n. sp. was widely distributed in Korea. It was found from soybean fields of all three provinces sampled. Key words: Heterodera sojae n. sp., morphology, phylogenetic, soybean, taxonomy. Soybean Glycine max (L.) Merr is one of the most im- glycines. -
Biology of Rice Root Nematode Hirschmanniella Oryzae (Luc & Godey, 1964)
University of Yangon Research Journal 2019, Vol.9, No.2 491 BIOLOGY OF RICE ROOT NEMATODE HIRSCHMANNIELLA ORYZAE (LUC & GODEY, 1964) IN HLAING THARYAR TOWNSHIP Hla Hla Maw1, Aye Kyi2 and Thant Thant Phone3 Abstract Hirschmanniella oryzae species is known as rice root nematode. This species is endo-parasitic and causes rice root rot disease. Diseased rice plants were collected from the rice fields of Hlaingtharyar Township. The H. oryzae nematodes were extracted from the roots of these rice plants. The biology of H. oryzae in this study field was observed that juvenile to adult took 1 week and adult to juvenile 3 weeks, juvenile to juvenile 4 weeks and adult to adult 4 weeks. Three generations had occurred during the rice growing season. Keywords: biology, rice root nematode, Hirschmanniella oryzae Introduction Rice is the dominant staple food crop in the developing countries. Almost 90 percent of rice is produce and consumed in Asia, and 96 percent in developing countries (FAO, 2004). In Myanmar, rice is the national food crop. Rice production needed for local consumption as well as for export. However, rice crop is subjected to a number of pests and diseases and plant parasitic nematodes are generally regarded as potentially serious constraints to crop productively. Among the rice diseases, nematode infestation can result in yield losses of up to 30 percent in general (Doberman and Fairhurst, 2000). More than one hundred species of plant parasitic nematodes have been found associated with cultivated rice. Four major species occur in the rice growing areas of Myanmar. They are rice stem nematode, Ditylenchus angustus, White tip nematode, Aphelenchoides besseyi, rice root-knot nematode, Meloidogyne graminicola and rice root nematode, Hirschmanniella oryzae (Mya Mya, 1983). -
Management of Production Problems in Tropical Fruit Crops 14Th to 23Rd September 2005
1906-2005 ICAR Sponsored Short Course Management of Production Problems in Tropical Fruit Crops 14th to 23rd September 2005 Editors Dr. T.N. Balamohan Dr. R.M. Vijayakumar Dr. K. Soorianathasundaram Dr. K. Poornima Dr. E. Vadivel Department of Fruit Crops Horticultural College and Research Institute Tamil Nadu Agricultural University Coimbatore - 641003 ICAR Sponsored Short Course Management of Production Problems in Tropical Fruit Crops (14th to 23rd September, 2005) Course Material Edited by Dr. T.N. Balamohan Dr. R.M.Vijayakumar Dr. K. Soorianathasundaram Dr. K. Poornima Dr. E. Vadivel Department of Fruit Crops Horticultural College and Research Institute Tamil Nadu Agricultural University Coimbatore - 641003 Organised by Department of Fruit Crops 1906-2005 Horticultural College and Research Institute Tamil Nadu Agricultural University, Coimbatore Sponsored by Indian Council of Agricultural Research New Delhi Course Organisation Course Director Dr.T.N.Balamohan Associate Directors 1. Dr.R.M.Vijayakumar 2. Dr.K.Soorianathasundaram 3. Dr.K.Poornima Course Associates 1. Dr.V.Panimalar 2. Dr.P.S.Kavitha 3. Ms.R.Sudha Printed at Sri Sakthi Promotional Litho Process 54, Robertson Road, R.S. Puram, Coimbatore - 641 002 Tel: 0422-2450133 E-mail: [email protected] Tamil Nadu Agricultural University 1906-2005 Dr. E. Vadivel Dr. T.N. Balamohan Dean (Hort) Prof. & Head (Fruits) Preface India is one of the emerging countries having a strong footing in Agriculture, particularly in Horticulture. Though there are plenty of technologies to boost up the production, there are several other areas to be adequately addressed for sustainable production. With this in mind and to sensitize the teachers, researchers and extension workers, the Indian Council of Agricultural Research has given approval to conduct a short course on “Management of Production Problems in Tropical Crops” from 14th September to 23rd September, 2005 at the Department of Fruit Crops, HC&RI, TNAU, Coimbatore. -
Mini Data Sheet on Heterodera Elachista
EPPO, 2019 Mini data sheet on Heterodera elachista Added to the EPPO Alert List in 2014 – Deleted in 2019 Reasons for deletion: Heterodera elachista has been included in EPPO Alert List for more than 3 years and during this period no particular international action was requested by the EPPO member countries. In 2019, the Working Party on Phytosanitary Regulations agreed that it could be deleted, considering that sufficient alert has been given. Heterodera elachista – Japanese rice cyst nematode Why: The cyst nematode, Heterodera elachista, was originally described in Japan in 1974. Until recently, it was known to occur in Asia only, affecting upland rice crops. In October 2012, its presence was detected in Italy on a maize crop. Because this is the first time that H. elachista is recorded in the EPPO region and on a new and economically important host plant, the EPPO Secretariat decided to add this nematode to the EPPO Alert List. Where: Until its discovery in 2012 in Italy (1 maize field in Emilia-Romagna region), H. elachista was known to occur in Asia only. EPPO region: Italy (no longer found in Emilia Romagna but other outbreaks were detected in Lombardia (2016) and Piemonte (2017); under eradication). Asia: China (Guangxi, Hubei, Hunan, Jiangxi, Ningxia), Iran, Japan (from Northern Honshu to Kyushu). On which plants: rice (Oryza sativa), and maize (Zea mays). In Asia, H. elachista has only been reported in rice crops. As is the case for most rice cyst nematodes (except H. oryzae), H. elachista cannot withstand an extended flooding period and is mainly found on upland rice or on lowland rice where there is little or no water control. -
De Luca Et Al., EJPP Page 1 Heterodera Elachista the Japanese
De Luca et al., EJPP Page 1 Heterodera elachista the Japanese cyst nematode parasitizing corn in Northern Italy: integrative diagnosis and bionomics Francesca De Luca1, Nicola Vovlas1, Giuseppe Lucarelli2, Alberto Troccoli1, Vincenzo Radicci1, Elena Fanelli1, Carolina Cantalapiedra-Navarrete3, Juan E. Palomares-Rius4, and Pablo Castillo3 1 Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), U.O.S. di Bari, Via G. Amendola 122/D, 70126 Bari, Italy 2 Horto Service, Via S.Pietro, 3, 70016 Noicattaro (BA), Italy 3 Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. 4084, 14080 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain 4 Department of Forest Pathology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba 305-8687, Ibaraki, Japan Received: ______/Accepted ________. *Author for correspondence: P. Castillo E-mail: [email protected] Fax: +34957499252 Short Title: Heterodera elachista on corn in Europe De Luca et al., EJPP Page 2 Abstract The Japanese cyst nematode Heterodera elachista was detected parasitizing corn cv Rixxer in Bosco Mesola (Ferrara Province) in Northern Italy. The only previous report of this nematode was in Asia (Japan, China and Iran) attacking upland rice; being this work the first report of this cyst nematode in Europe, and confirmed corn as a new host plant for this species. Integrative morphological and molecular data for this species were obtained using D2-D3 expansion regions of 28S rDNA, ITS1-rDNA, the partial 18S rDNA, the protein- coding mitochondrial gene, cytochrome oxidase c subunit I (COI), and the heat-shock protein 90 (hsp90). Heterodera elachista identified in Northern Italy was morphologically and molecularly clearly separated from other cyst nematodes attacking corn (viz. -
Effects of Heterodera Sacchari on Leaf Chlorophyll Content and Root Damage of Some Upland NERICA Rice Cultivars
IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 7, Issue 8 Ver. I (Aug. 2014), PP 49-57 www.iosrjournals.org Effects of Heterodera sacchari on Leaf Chlorophyll Content and Root Damage of some Upland NERICA Rice Cultivars L.I. Akpheokhaia*, B. Fawoleb and A.O. Claudius-Coleb aDepartment of Crop Science, Faculty of Agriculture, University of Uyo, Uyo, Nigeria. bDepartment of Crop Protection and Environmental Biology, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan. Abstract: Heterodera sacchari is recognised as one of the most important soil-borne pathogens affecting rice in Nigeria. Pot and field experiments were conducted to evaluate the effect of H. sacchari on leaf chlorophyll content of five upland NERICA rice (NR) cultivars: NR1, NR2, NR3, NR8 and NR14. Three-week old rice plants in pots were each inoculated with: 0, 2,500, 5,000 and 10,000 eggs and juveniles, respectively. The experiment was a 5x4 factorial arranged in a complete randomised design (CRD) replicated 6 times. The field experiment was carried out on a H. sacchari naturally-infested field and the experimental design was a split-plot in a randomised complete block design (RCBD) replicated four times. Data were taken on leaf chlorophyll content using Minolta SPAD-502 meter. Final nematode population was determined from rice roots and soil. Root damage was accessed on a scale of 1-5. Where: 1= (0% no damage) and 5= (>75%severe root damage). Data were analyzed using ANOVA and means were separated with LSD at P≤0.05.