Thesis Outline

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Outline UNIVERSITY OF SOUTHAMPTON Faculty of Engineering, Science, and Mathematics School of Ocean and Earth Science Resolving phylogenetic relationships within the order Enoplida (Phylum Nematoda) by Holly Marie Bik Thesis of the degree of Doctor of Philosophy January 2010 Graduate School of the National Oceanography Centre, Southampton This PhD Dissertation by Holly Marie Bik has been produced under the supervision of the following persons Supervisors Prof John Lambshead Dr Lawrence Hawkins Dr Alan Hughes Dr David Lunt Research Advisor Prof W. Kelley Thomas Chair of Advisory Panel Dr Martin Sheader 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS SCHOOL OF OCEAN & EARTH SCIENCE Doctor of Philosophy RESOLVING PHYLOGENETIC RELATIONSHIPS WITHIN THE ORDER ENOPLIDA (PHYLUM NEMATODA) by Holly Marie Bik The Order Enoplida (Phylum Nematoda) has been proposed as a divergent nematode lineage—Enoplid nematodes are thought to exhibit morphological and developmental characteristics present in the ‘ancestral nematode’. However, previous molecular phylogenies have failed to unequivocally confirm the position of this group. The Enoplida is primarily comprised of free-living marine species; if these taxa represent close relatives of the nematode ancestor, this relationship would presumably imply a marine origin for the phylum. Prior to this investigation, few publically available gene sequences existed for Enoplid nematodes, and published sequences represented only shallow water fauna from Northwest Europe. This study has aimed to improve resolution at the base of the nematode tree, using drastically increased taxon-sampling within the previously neglected Enoplid clade. Morphological identifications, nuclear gene sequences (18S and 28S rRNA), and mitochondrial gene sequences (Cox1) were obtained from marine specimens representing a variety of deep-sea and intertidal habitats. Molecular data were used to assess the phylogenetic placement of the Enoplid clade, resolve internal taxonomic relationships within this group, and investigate relationships between shallow water and deep-sea fauna. Despite rigorous empirical testing and comprehensive taxon sampling, large-scale phylogenetic analyses based on 18S rRNA sequences (using both Maximum Likelihood and Bayesian Inference methods) failed to provide added resolution at the base of the nematode tree. Molecular data from the 18S rRNA gene was unable to confirm the placement of Enoplida as a divergent lineage representing the sister taxon to all other nematodes. These findings highlight the limitations of the 18S gene for resolving the deepest evolutionary splits amongst nematode clades. Analysis of internal relationships reveals that the Enoplida is split into two main clades, with groups consisting of terrestrial and primarily marine fauna, respectively. For marine taxa, deep-sea and shallow-water specimens from the same genus consistently appear as sister taxa. Deep-sea nematode species may have arisen via several evolutionary routes; some deep-sea clades appear to represent recently derived forms, while other groups seem to have radiated much earlier. Nematodes from deep-sea sites exhibit no obvious clustering according to depth or geographic location, and specimens represent a wide taxonomic range within the Enoplida. In addition, there seems to be some molecular evidence for purportedly cosmopolitan nematode species; identical gene sequences were recorded between distant shallow water locations, as well as between deep-sea and shallow water habitats. Data from Enoplid nematodes suggests an intriguing pattern for nematode species distributions—validating these preliminary insights will require a large amount of molecular data from many additional geographic locations. Future studies will also need to incorporate data from additional genetic loci (or use phylogenomic methods) in order to build robust deep phylogenies. 3 Table of Contents ABSTRACT ................................................................................................................................. 3 Table of Contents ..................................................................................................................... 4 List of Tables ............................................................................................................................ 6 List of Figures ........................................................................................................................... 8 List of Accompanying Material .............................................................................................. 12 DECLARATION OF AUTHORSHIP ............................................................................................ 13 Acknowledgements ................................................................................................................ 14 1. Introduction ....................................................................................................................... 15 1.1 An understudied phylum ............................................................................................. 15 1.2 Limitations of nematode morphology and taxonomy ................................................. 16 1.3 Molecular investigations in nematodes ....................................................................... 17 1.3.1 The 18S ribosomal RNA gene ................................................................................ 19 1.3.2 The 28S ribosomal subunit gene ........................................................................... 21 1.3.3 The Internal Transcribed Spacer Region ............................................................... 22 1.3.4 Cytochrome c oxidase subunit I ............................................................................ 22 1.3.5 Other genetic methods ......................................................................................... 23 1.4 Practical applications of molecular data ...................................................................... 25 1.4.1 DNA Barcoding ...................................................................................................... 25 1.4.2 Future prospects ................................................................................................... 27 1.5 Molecular evolution ..................................................................................................... 28 1.6 Reconstructing evolution using phylogenetic methods .............................................. 31 1.6.1 Alignment Construction ........................................................................................ 31 1.6.2 Phylogenetic reconstruction ................................................................................. 34 1.6.3 Building molecular phylogenies ............................................................................ 36 1.6.3.1 Algorithmic methods ..................................................................................... 37 1.6.3.2 Criterion-based methods ............................................................................... 39 1.6.3.2.1 Parsimony ............................................................................................... 39 1.6.3.2.2 Maximum Likelihood .............................................................................. 40 1.6.3.2.3 Bayesian Inference .................................................................................. 41 1.6.4 Models for estimating molecular evolution ......................................................... 42 1.6.5 Gauging support for tree topologies .................................................................... 45 1.6.6 Choosing a phylogenetic method ......................................................................... 48 1.7 Recent molecular phylogenies of the Phylum Nematoda ........................................... 49 1.8 Unresolved questions in nematode phylogenetics ..................................................... 50 1.8.1 Resolving early splits amongst nematodes ........................................................... 50 1.8.2 Internal relationships within the order Enoplida ................................................. 53 1.8.3 The origin of deep-sea fauna ................................................................................ 64 1.9 Conclusions .................................................................................................................. 65 1.10 Aims and Objectives ................................................................................................... 66 2. Materials and Methods ..................................................................................................... 67 2.1 Sampling Regime .......................................................................................................... 67 2.1.2 Collection of shallow water samples .................................................................... 67 2.1.3 Collection of deep-sea samples ............................................................................ 68 2.1.4 Sample processing ................................................................................................ 68 2.2 Time Series experiments .............................................................................................. 72 2.3 Taxonomic identification and video capture of Enoplid specimens ............................ 73 2.4 Final protocol for DNA extraction, PCR, and sequencing ...........................................
Recommended publications
  • Assessment of Pathogenic Bacteria Transfer from Pristionchus
    Assessment of Pathogenic Bacteria Transfer From Pristionchus Entomophagus (Nematoda: Diplogasteridae) to the Invasive Ant Myrmica Rubra and Its Potential Role in Colony Mortality in Coastal Maine Suzanne Lynn Ishaq ( [email protected] ) School of Food and Agriculture, University of Maine, Orono, ME 04469 https://orcid.org/0000-0002- 2615-8055 Alice Hotopp University of Maine Samantha Silverbrand University of Maine Jonathan E. Dumont Husson University Amy Michaud University of California Davis Jean MacRae University of Maine S. Patricia Stock University of Arizona Eleanor Groden University of Maine Research Article Keywords: bacterial community, biological control, microbial transfer, nematodes, Illumina, Galleria mellonella larvae Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-101817/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background: Necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States. The nematodes may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. M. rubra ants naturally hosting nematodes were collected from collapsed wild nests in Maine and used for bacteria identication. Virulence assays were carried out to validate acquisition and vectoring of environmental bacteria to the ants. Results: Multiple bacteria species, including Paenibacillus spp., were found in the nematodes’ digestive tract. Serratia marcescens, Serratia nematodiphila, and Pseudomonas uorescens were collected from the hemolymph of nematode-infected Galleria mellonella larvae. Variability was observed in insect virulence in relation to the site origin of the nematodes. In vitro assays conrmed uptake of RFP-labeled Pseudomonas aeruginosa strain PA14 by nematodes.
    [Show full text]
  • Responses of an Abyssal Meiobenthic Community to Short-Term Burial With
    Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the South-East Pacific Lisa Mevenkamp, Katja Guilini, Antje Boetius, Johan De Grave, Brecht Laforce, Dimitri Vandenberghe, Laszlo Vincze, Ann Vanreusel 5 Supplementary Material Figure S1 A) Front view on the sediment-dispensing device, sediment is filled in tubes inside the round plexiglass space B) Top view 10 in open position, tubes are visible as big holes and C) Top view in closed position. Holes in the plexiglass cover ensured escape of all air in the device. 1 Figure S2 Pictures of push cores taken at the end of the experiment from the Control treatment (A) and the Burial treatment (B and C). Through its black colour, the layer of crushed nodule debris is easily distinguishable from the underlying sediment. 5 Figure S3 Example of the crushed nodule substrate. Scale in centimetres. 2 Figure S4 MDS plot of the relative nematode genus composition in each sample of the Control and Burial treatment (BT) per sediment depth layer with overlying contours of significant (SIMPROF test) clusters at a 40 % similarity level. NOD = crushed nodule layer 5 3 Table S1 Mean densities (ind. 10 cm-2, ± standard error)and feeding type group of nematode genera found in both treatments of the experiment combining all depth layers. Feeding Order Family Genus type Control Burial treatment Araeolaimida Axonolaimidae Ascolaimus 1B 0.17 ± 0.17 Comesomatidae Cervonema 1B 3.57 ± 0.81 2.59 ± 0.90 Minolaimus 1A 0.43 ± 0.43 0.29 ± 0.29 Pierrickia 1B 0.42 ± 0.21 0.94
    [Show full text]
  • TIMING of NEMATICIDE APPLICATIONS for CONTROL of Belenolaimus Longicaudatus on GOLF COURSE FAIRWAYS
    TIMING OF NEMATICIDE APPLICATIONS FOR CONTROL OF Belenolaimus longicaudatus ON GOLF COURSE FAIRWAYS By PAURIC C. MC GROARY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Pauric C. Mc Groary 2 ACKNOWLEDGMENTS I would like to thank Dr. William Crow for his scientific expertise, persistence, and support. I am also indebted to my other committee supervisors members, Dr. Robert McSorley and Dr. Robin Giblin-Davis, who were always available to answer questions and to provide guidance throughout. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................3 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW ..............................................................10 Introduction.............................................................................................................................10 Belonolaimus longicaudatus...................................................................................................11
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • JOURNAL of NEMATOLOGY Morphological And
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-098 e2020-98 | Vol. 52 Morphological and molecular characterization of Heterodera dunensis n. sp. (Nematoda: Heteroderidae) from Gran Canaria, Canary Islands Phougeishangbam Rolish Singh1,2,*, Gerrit Karssen1, 2, Marjolein Couvreur1 and Wim Bert1 Abstract 1Nematology Research Unit, Heterodera dunensis n. sp. from the coastal dunes of Gran Canaria, Department of Biology, Ghent Canary Islands, is described. This new species belongs to the University, K.L. Ledeganckstraat Schachtii group of Heterodera with ambifenestrate fenestration, 35, 9000, Ghent, Belgium. presence of prominent bullae, and a strong underbridge of cysts. It is characterized by vermiform second-stage juveniles having a slightly 2National Plant Protection offset, dome-shaped labial region with three annuli, four lateral lines, Organization, Wageningen a relatively long stylet (27-31 µm), short tail (35-45 µm), and 46 to 51% Nematode Collection, P.O. Box of tail as hyaline portion. Males were not found in the type population. 9102, 6700, HC, Wageningen, Phylogenetic trees inferred from D2-D3 of 28S, partial ITS, and 18S The Netherlands. of ribosomal DNA and COI of mitochondrial DNA sequences indicate *E-mail: PhougeishangbamRolish. a position in the ‘Schachtii clade’. [email protected] This paper was edited by Keywords Zafar Ahmad Handoo. 18S, 28S, Canary Islands, COI, Cyst nematode, ITS, Gran Canaria, Heterodera dunensis, Plant-parasitic nematodes, Schachtii, Received for publication Systematics, Taxonomy. September
    [Show full text]
  • World Database of Free-Living Marine Nematodes Editor Workshop Report
    World Database of Free-Living Marine Nematodes Editor Workshop Ghent University – Marine Biology Research Group – Ghent, Belgium 05 - 07 September 2018 Email to contact all Nemys editors: [email protected] Report Attendants Editors: Tania Nara Bezerra, Ann Vanreusel, Mike Hodda, Zeng Zhao, Ursula Eisendle-Flöckner, Oleksandr Holovachov, Virág Venekey, Nic Smol, Wilfrida Decraemer, Dmitry Miljutin, Vadim Mokievsky Excused: Daniel Leduc, Jyotsna Sharma, Reyes Peña Santiago, Alexei Tchesunov WoRMS Data Management Team (DMT): Bart Vanhoorne, Wim Decock, Thomas Lanssens, Ricardo Simões Excused: Leen Vandepitte The first Nemys Editors Workshop in February 2015 result in a considerable improvement of the database and in 2016 during the Meiofauna Conference in Crete, where some of the editors were present, some issues were also discussed. These possibilities of having the editors working alongside provide an efficient work in a shorter time. We definitely need to have these workshops periodically. The objectives of this workshop were: (i) to evaluate the work that has been done over the past three years and the maintenance of the database, (ii) to welcome the editors of terrestrial and fresh water nematodes, set clear goals, assign tasks and initiate the practical work related to new initiatives and (iii) to outline practices for outreach and scientific output for Nemys (e.g. scientific papers, presentations of the progress, plans and results at an upcoming conference). On the first day it was asked to have a rapporteur for each session in order to have it registered. The original minutes are on a separate document and were used to generate this report. This report includes: I.
    [Show full text]
  • Note 20: List of Plant-Parasitic Nematodes Found in North Carolina
    nema note 20 NCDA&CS AGRONOMIC DIVISION NEMATODE ASSAY SECTION PHYSICAL ADDRESS 4300 REEDY CREEK ROAD List of Plant-Parasitic Nematodes Recorded in RALEIGH NC 27607-6465 North Carolina MAILING ADDRESS 1040 MAIL SERVICE CENTER Weimin Ye RALEIGH NC 27699-1040 PHONE: 919-733-2655 FAX: 919-733-2837 North Carolina's agricultural industry, including food, fiber, ornamentals and forestry, contributes $84 billion to the state's annual economy, accounts for more than 17 percent of the state's DR. WEIMIN YE NEMATOLOGIST income, and employs 17 percent of the work force. North Carolina is one of the most diversified agricultural states in the nation. DR. COLLEEN HUDAK-WISE Approximately, 50,000 farmers grow over 80 different commodities in DIVISION DIRECTOR North Carolina utilizing 8.2 million of the state's 12.5 million hectares to furnish consumers a dependable and affordable supply STEVE TROXLER of food and fiber. North Carolina produces more tobacco and sweet AGRICULTURE COMMISSIONER potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA&CS Agricultural Statistics, 2017). Plant-parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microorganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al., 2011). All crops are damaged by at least one species of nematode.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]
  • Survey and Biology of Cereal Cyst Nematode, Heterodera Latipons, in Rain-Fed Wheat in Markazi Province, Iran
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 10–629/SAE/2011/13–4–576–580 http://www.fspublishers.org Full Length Article Survey and Biology of Cereal Cyst Nematode, Heterodera latipons, in Rain-fed Wheat in Markazi Province, Iran ABOLFAZL HAJIHASSANI1, ZAHRA TANHA MAAFI† ALIREZA AHMADI‡ AND MEYSAM TAJI Young Researchers Club, Arak Branch, Islamic Azad University, P.O. Box 38135/567, Arak, Iran †Nematology Research Department, Iranian Research Institute of Plant Protection, Tehran, Iran ‡Agricultural Research and Natural Resources Centre of Khuzestan, Ahvaz, Iran 1Corresponding author’s e-mail: [email protected] ABSTRACT Cereal cyst nematodes are one of the most important soil-borne pathogens of cereals throughout the world. This group of nematodes is considered the most economically damaging pathogens of wheat and barley in Iran. In the present study, a series experiments were conducted during 2007-2010 to determine the distribution and population density of cereal cyst nematodes and to examine the biology of Heterodera latipons in the winter wheat cv. Sardari in a microplot under rain-fed conditions over two successive years in Markazi province in central Iran. Results of field survey showed that 40% of the fields were infested with at least one species of either Heterodera filipjevi or H. latipons. H. filipjevi was most prevalent in Farmahin, Tafresh and Khomein, with H. latipons being found in Khomein and Zarandieh regions. Female nematodes were also observed in Bromus tectarum, Hordeum disticum and Secale cereale, which are new host records for H. filipjevi. Also, H. filipjevi and H. latipons were found in combination with root and crown rot fungi, Bipolaris sorokiniana, Fusarium culmorum, F.
    [Show full text]
  • Sensitivity of Ribosomal RNA Character Sampling in the Phylogeny of Rhabditida
    Journal of Nematology 47(4):337–355. 2015. Ó The Society of Nematologists 2015. Sensitivity of Ribosomal RNA Character Sampling in the Phylogeny of Rhabditida 1 2 2 OLEKSANDR HOLOVACHOV, LAUREN CAMP, AND STEVEN A. NADLER Abstract: Near-full-length 18S and 28S rRNA gene sequences were obtained for 33 nematode species. Datasets were constructed based on secondary structure and progressive multiple alignments, and clades were compared for phylogenies inferred by Bayesian and maximum likelihood methods. Clade comparisons were also made following removal of ambiguously aligned sites as determined using the program ProAlign. Different alignments of these data produced tree topologies that differed, sometimes markedly, when analyzed by the same inference method. With one exception, the same alignment produced an identical tree topology when analyzed by different methods. Removal of ambiguously aligned sites altered the tree topology and also reduced resolution. Nematode clades were sensitive to differences in multiple alignments, and more than doubling the amount of sequence data by addition of 28S rRNA did not fully mitigate this result. Although some individual clades showed substantially higher support when 28S data were combined with 18S data, the combined analysis yielded no statistically significant increases in the number of clades receiving higher support when compared to the 18S data alone. Secondary structure alignment increased accuracy in positional homology assignment and, when used in combination with paired-site substitution models, these structural hypotheses of characters and improved models of character state change yielded high levels of phylogenetic resolution. Phylogenetic results included strong support for inclusion of Daubaylia potomaca within Cephalobidae, whereas the position of Fescia grossa within Tylenchina varied depending on the alignment, and the relationships among Rhabditidae, Diplogastridae, and Bunonematidae were not resolved.
    [Show full text]
  • Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae
    Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Vladislav Susoy aus Berezniki, Russland Tübingen 2015 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 5 November 2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ralf J. Sommer 2. Berichterstatter: Prof. Dr. Heinz-R. Köhler 3. Berichterstatter: Prof. Dr. Hinrich Schulenburg Acknowledgements I am deeply appreciative of the many people who have supported my work. First and foremost, I would like to thank my advisors, Professor Ralf J. Sommer and Dr. Matthias Herrmann for giving me the opportunity to pursue various research projects as well as for their insightful scientific advice, support, and encouragement. I am also very grateful to Matthias for introducing me to nematology and for doing an excellent job of organizing fieldwork in Germany, Arizona and on La Réunion. I would like to thank the members of my examination committee: Professor Heinz-R. Köhler and Professor Hinrich Schulenburg for evaluating this dissertation and Dr. Felicity Jones, Professor Karl Forchhammer, and Professor Rolf Reuter for being my examiners. I consider myself fortunate for having had Dr. Erik J. Ragsdale as a colleague for several years, and more than that to count him as a friend. We have had exciting collaborations and great discussions and I would like to thank you, Erik, for your attention, inspiration, and thoughtful feedback. I also want to thank Erik and Orlando de Lange for reading over drafts of this dissertation and spelling out some nuances of English writing.
    [Show full text]
  • Burkholderia As Bacterial Symbionts of Lagriinae Beetles
    Burkholderia as bacterial symbionts of Lagriinae beetles Symbiont transmission, prevalence and ecological significance in Lagria villosa and Lagria hirta (Coleoptera: Tenebrionidae) Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by B.Sc. Laura Victoria Flórez born on 19.08.1986 in Bogotá, Colombia Gutachter: 1) Prof. Dr. Martin Kaltenpoth – Johannes-Gutenberg-Universität, Mainz 2) Prof. Dr. Martha S. Hunter – University of Arizona, U.S.A. 3) Prof. Dr. Christian Hertweck – Friedrich-Schiller-Universität, Jena Das Promotionskolloquium wurde abgelegt am: 11.11.2016 “It's life that matters, nothing but life—the process of discovering, the everlasting and perpetual process, not the discovery itself, at all.” Fyodor Dostoyevsky, The Idiot CONTENT List of publications ................................................................................................................ 1 CHAPTER 1: General Introduction ....................................................................................... 2 1.1. The significance of microorganisms in eukaryote biology ....................................................... 2 1.2. The versatile lifestyles of Burkholderia bacteria .................................................................... 4 1.3. Lagriinae beetles and their unexplored symbiosis with bacteria ................................................ 6 1.4. Thesis outline ..........................................................................................................
    [Show full text]