TIMING of NEMATICIDE APPLICATIONS for CONTROL of Belenolaimus Longicaudatus on GOLF COURSE FAIRWAYS

Total Page:16

File Type:pdf, Size:1020Kb

TIMING of NEMATICIDE APPLICATIONS for CONTROL of Belenolaimus Longicaudatus on GOLF COURSE FAIRWAYS TIMING OF NEMATICIDE APPLICATIONS FOR CONTROL OF Belenolaimus longicaudatus ON GOLF COURSE FAIRWAYS By PAURIC C. MC GROARY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Pauric C. Mc Groary 2 ACKNOWLEDGMENTS I would like to thank Dr. William Crow for his scientific expertise, persistence, and support. I am also indebted to my other committee supervisors members, Dr. Robert McSorley and Dr. Robin Giblin-Davis, who were always available to answer questions and to provide guidance throughout. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................3 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW ..............................................................10 Introduction.............................................................................................................................10 Belonolaimus longicaudatus...................................................................................................11 Taxonomy........................................................................................................................11 Biology ............................................................................................................................11 Geographic Distribution ..................................................................................................14 Disease Symptoms and Pathogenicity on Warm-Season Turfgrasses ............................14 Bermudagrass ..................................................................................................................15 Cultural Practices.............................................................................................................16 Objectives ...............................................................................................................................17 2 SEASONAL FLUCTUATIONS OF Belonolaimus longicadatus IN BERMUDAGRASS ...............................................................................................................18 Introduction.............................................................................................................................18 Materials and Methods ...........................................................................................................19 Experimental Sites...........................................................................................................19 Experimental Design .......................................................................................................20 Sampling and Evaluation.................................................................................................21 Data Analysis...................................................................................................................21 Results.....................................................................................................................................22 Discussion...............................................................................................................................24 3 TIMING OF NEMATICIDE APPLICATIONS ON TURF TO REDUCE DAMAGE CAUSED BY Belonolaimus longicaudatus ...........................................................................32 Introduction.............................................................................................................................32 Materials and Methods ...........................................................................................................33 Sampling and Evaluation........................................................................................................34 Nematodes .......................................................................................................................34 Roots................................................................................................................................35 Data Analysis...................................................................................................................35 Results.....................................................................................................................................35 4 Discussion...............................................................................................................................36 4 SUMMARY............................................................................................................................42 LIST OF REFERENCES...............................................................................................................45 BIOGRAPHICAL SKETCH .........................................................................................................50 5 LIST OF TABLES Table page 2-1. Linear regression number of Belonolaimus longicaudatus/300 cm3 of soil (Y) on root length 300 cm3 of soil (x) from four golf course fairways in Florida sampled monthly. .............................................................................................................................31 6 LIST OF FIGURES Figure page 2-1 Population densities of Belonolaimus longicaudatus and root lengths from 300 cm3 of soil from bermudagrass and soil temperatures at the Ft. Lauderdale Research and Education Center, Ft. Lauderdale, FL (January 2005 – December 2005). Data are means ± standard error.......................................................................................................27 2-2 Population densities of Belonolaimus longicaudatus and root lengths from 300 cm3 of soil from bermudagrass and soil temperatures at Ironwood Golf Course, Gainesville, FL (February 2005 - January 2005). Data are means ± standard error.........28 2-3 Population densities of Belonolaimus longicaudatus and root lengths from 300 cm3 of soil from bermudagrass and soil temperatures at Sandpiper Golf Course, Sun City, FL (March 2006 - November 2006). Data are means ± standard errors...........................29 2-4 Population densities of Belonolaimus longicaudatus and root lengths from 300 cm3 of soil from bermudagrass and soil temperatures at Club Renaissance Golf Course, Sun City, FL (March 2006 - November 2006). Data are means ± standard errors...........30 3-1 Effects of application time of 1,3-dichloropropene on Belonolaimus longicaudatus population densities at Sandpiper Golf Course, Sun City, FL (March 2006 - November 2006). ...............................................................................................................38 3-2 Effects of application time of 1,3-dichloropropene on root length at Sandpiper Golf Course, Sun City, FL (March 2006 - November 2006). Asterisk indicates treatment is different from untreated (P < 0.1). .................................................................................39 3-3 Effects of application time of 1,3-dichloropropene on Belonolaimus longicaudatus population densities at Club Renaissance Golf Course, Sun City, FL (March 2006 - November 2006). ...............................................................................................................40 3-4 Effects of application time of 1,3-dichloropropene on root length at Club Renaissance Golf Course, Sun City, FL (March 2006 - November 2006)........................41 7 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science TIMING OF NEMATICIDE APPLICATION FOR CONTROL OF Belonolaimus longicaudatus ON GOLF COURSE FAIRWAYS By Pauric C. Mc Groary May 2007 Chair: William T. Crow Major: Entomology and Nematology Sting nematode (Belonolaimus longicaudatus) is an important pest of bermudagrass (Cynodon dactylon), and other turfgrasses grown in the southeastern United States. On bermudagrass, B. longicaudatus causes severe damage to lateral roots, decreased water and nutrient uptake, and decreased rates of evapotranspiration leading to reduced turf quality, color, and density. Field experiments from January 2005 to March 2007 were conducted to monitor the seasonal dynamics of B. longicaudatus populations, bermudagrass root growth, and soil temperatures on four bermudagrass fairways in Florida in order to develop an empirical optimum time for nematicide application. Seasonal fluctuations in B. longicaudatus and root growth varied among locations and years, but similar trends were observed in all four trials for nematodes and root growth. Linear regression models relating root length to nematode population densities (0 - 15 cm depth) were significant (P ≤ 0.10) at three of four sites. At the FLREC site, root length and nematode population were correlated (P ≤ 0.10) in April and May. At the IW site root length was related to nematode population (P ≤ 0.10) in June, September, and October. At the SP site, root length and B. longicaudatus population densities were significantly related (P ≥ 0.10) only in July. However, regression
Recommended publications
  • Description and Identification of Four Species of Plant-Parasitic Nematodes Associated with Forage Legumes
    5 Egypt. J. Agronematol., Vol. 17, No.1, PP. 51-64 (2018) Description and Identification of Four Species of Plant-parasitic Nematodes Associated with Forage Legumes * * Mahfouz M. M. Abd-Elgawad ; Mohamed F.M. Eissa ; Abd-Elmoneim Y. ** *** **** El-Gindi ; Grover C. Smart ; and Ahmed El-bahrawy . * Plant Pathology Department, National Research Centre. ** Department of Agricultural Zoology and Nematology, Faculty of Agriculture, University of Cairo, Giza, Egypt. *** Department of Entomology and Nematology, IFAS, University of Florida, USA. **** Institute for Sustainable Plant Protection, National Council of Research, Bari, Italy. Abstract Four species of plant parasitic nematodes were present in soil samples planted with forage legumes at Alachua County, Florida, USA. The detected species Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, and Paratrichodorus minor were described in the present study. They belong to orders Rhabditida (Belonolaimus longicaudatus, Criconemella ornate, and Hoplolaimus galeatus) and Triplonchida (Paratrichodorus minor) and to taxonomical families Dolichodoridae (Belonolaimus longicaudatus), Hoplolaimidae (Hoplolaimus galeatus) Criconematidae (Criconemella ornate), and Trichodoridae (Paratrichodorus minor). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys. Keywords: Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, Paratrichodorus minor, morphology,
    [Show full text]
  • Sting Nematodes Modify Metabolomic Profiles of Host Plants
    www.nature.com/scientificreports OPEN Sting nematodes modify metabolomic profles of host plants Denis S. Willett1,5*, Camila C. Filgueiras1,5, Nicole D. Benda2, Jing Zhang3 & Kevin E. Kenworthy4 Plant-parasitic nematodes are devastating pathogens of many important agricultural crops. They have been successful in large part due to their ability to modify host plant metabolomes to their beneft. Both root-knot and cyst nematodes are endoparasites that have co-evolved to modify host plants to create sophisticated feeding cells and suppress plant defenses. In contrast, the ability of migratory ectoparasitic nematodes to modify host plants is unknown. Based on global metabolomic profling of sting nematodes in African bermudagrass, ectoparasites can modify the global metabolome of host plants. Specifcally, sting nematodes suppress amino acids in susceptible cultivars. Upregulation of compounds linked to plant defense have negative impacts on sting nematode population densities. Pipecolic acid, linked to systemic acquired resistance induction, seems to play a large role in protecting tolerant cultivars from sting nematode feeding and could be targeted in breeding programs. Nematodes are ubiquitous denizens of belowground environments. While many are free-living, the more than 4000 plant-parasitic nematodes are devastating in their impacts on human agriculture1,2. Most important agri- cultural crops sufer yield suppression from plant-parasitic nematodes with annual economic damage estimates exceeding $100 billion1,3. This devastation is due in part to the success of plant-parasitic nematodes as pathogens in overcoming plant defenses. Indeed, the manner in which plant-parasitic nematodes overcome plant defenses makes them a model system for understanding basic plant biology and mechanisms of resistance3,4.
    [Show full text]
  • Note 20: List of Plant-Parasitic Nematodes Found in North Carolina
    nema note 20 NCDA&CS AGRONOMIC DIVISION NEMATODE ASSAY SECTION PHYSICAL ADDRESS 4300 REEDY CREEK ROAD List of Plant-Parasitic Nematodes Recorded in RALEIGH NC 27607-6465 North Carolina MAILING ADDRESS 1040 MAIL SERVICE CENTER Weimin Ye RALEIGH NC 27699-1040 PHONE: 919-733-2655 FAX: 919-733-2837 North Carolina's agricultural industry, including food, fiber, ornamentals and forestry, contributes $84 billion to the state's annual economy, accounts for more than 17 percent of the state's DR. WEIMIN YE NEMATOLOGIST income, and employs 17 percent of the work force. North Carolina is one of the most diversified agricultural states in the nation. DR. COLLEEN HUDAK-WISE Approximately, 50,000 farmers grow over 80 different commodities in DIVISION DIRECTOR North Carolina utilizing 8.2 million of the state's 12.5 million hectares to furnish consumers a dependable and affordable supply STEVE TROXLER of food and fiber. North Carolina produces more tobacco and sweet AGRICULTURE COMMISSIONER potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA&CS Agricultural Statistics, 2017). Plant-parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microorganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al., 2011). All crops are damaged by at least one species of nematode.
    [Show full text]
  • Nematode Management in Lawns
    Agriculture and Natural Resources FSA6141 Nematode Management in Lawns Aaron Patton Nematodes are pests of lawns in Assistant Professor - Arkansas, particularly in sandy soils. Turfgrass Specialist Nematodes are microscopic, unseg­ mented roundworms, 1/300 to 1/3 inch David Moseley in length (8) (Figure 1), that live in County Extension Agent ­ the soil and can parasitize turfgrasses. Agriculture Ronnie Bateman Pest Management Anus Program Associate Figure 2. Parasitic nematode feeding on Head a plant root (Photo by U. Zunke, Nemapix Tail Vol. 2) Terry Kirkpatrick Stylet Professor - Nematologist There are six stages in the nematode life cycle including an egg stage and the adult. There are four Figure 1. Schematic drawing of a plant juvenile stages that allow the parasitic nematode (Adapted from N.A. nematode to increase in size and in Cobb, Nemapix Vol. 2) some species to change shape. These juvenile stages are similar to the Although most nematodes are larval stages found in insects. beneficial and feed on fungi, bacteria Nematodes are aquatic animals and, and insects or help in breaking down therefore, require water to survive. organic matter, there are a few Nematodes live and move in the water species that parasitize turfgrasses and film that surrounds soil particles. Soil cause damage, especially in sandy type, particularly sand content, has a soils. All parasitic nematodes have a major impact on the ability of nema­ stylet (Figure 1), a protruding, needle­ todes to move, infect roots and repro­ like mouthpart, which is used to punc­ duce. For most nematodes that are a ture the turfgrass root and feed problem in turf, well-drained sandy (Figure 2).
    [Show full text]
  • Variation Among Populations of Belonolaimus Iongicaudatus I
    Variation among Populations of Belonolaimus Iongicaudatus I R. T. ROBBINS and HEDWIG HIRSCHMANN 2 Abstract: Three North Carolina populations of Belonolairnus longicaudatus differed significantly from three Georgia populations in stylet measurements, the c ratio, the distance of the excretory pore from the anterior end for both sexes; the a ratio for females only; and the total body length, tail length, and spicule length for males only. The Georgia nematodes were stouter, and the females possessed sclerotized vaginal pieces. The distal portion of the spicules of North Carolina males had an indentation and hump lacking in those of the Georgia males. The haploid number of chromosomes was eight for males from all populations of B. longicaudatus and a North Carolina population of B. rnaritimus. Interpopulation matings of the Tarboro, N.C. and Tifton, Ga. populations indicated that the offspring produced were infertile. Morphological differences and reproductive isolation suggest that the North Carolina and the Georgia populations belong to different species. Key Words: morphology, cytology, hybridization, Belonolairnus maritimus, populations. The sting nematode, Belonolaimus North Carolina and Georgia populations longicaudatus Rau, an important plant were chosen because of their reported pathogen, has an extensive host range and difference in pathogenicity on peanuts. B. inflicts economic losses on a wide variety of maritimus was included in these studies for crops (3, 6, 8, 9, 15). Previous investigations comparative purposes. suggest that there are several pathotypes or physiological races (1, 14, 15). This nematode MATERIALS AND METHODS has been reported to be pathogenic on peanut in North Carolina and Virginia (9, 17, 18). In The six Belonolaimus longicaudatus Georgia, however, it did not cause injury or populations studied were from the following reproduce well on peanuts (5).
    [Show full text]
  • Nematode Control Alternatives
    Nematodes: ATTRA Alternative Controls A Publication of ATTRA - National Sustainable Agriculture Information Service • 1-800-346-9140 • www.attra.ncat.org By Martin Guerena This publication provides general information on the tiny worm-like organisms called nematodes. It NCAT Agriculture contains detailed descriptions of the genera of nematodes that attack plants, as well as various methods Specialist to diagnose, discourage, and manage plant parasitic nematodes in a least toxic, sustainable manner. © 2006 NCAT Contents Introduction Introduction ..................... 1 ematodes are Symptoms and tiny, worm-like, Sampling .......................... 4 Nmulticellular Preventing Further animals adapted to liv- Spread of Nematodes ....................... 4 ing in water. The num- ber of nematode species Managing Soil Biology ............................... 5 is estimated at half a Crop Rotations and mil lion, many of which Cover Crops ...................... 6 are “free-living” types Botanical found in the oceans, Nematicides ..................... 9 in freshwater habitats, Biocontrols ...................... 10 and in soils. Plant-par- Plant Resistance ............11 asitic species form a Red Plastic Mulch ......... 12 smaller group. Nema- www.insectimages.org Solarization .................... 13 todes are common Flooding .......................... 13 in soils all over the Root-knot nematode—Meloidogyne brevicauda Loos Summary ......................... 13 world (Dropkin, 1980; ©Jonathan D. Eisenback, Virginia Polytechnic Institute and State University References ..................... 14 Yepsen, 1984). As a commentator in the early Further Resources ........17 twentieth cen tury wrote: genera and species have particu lar soil and Web Resources ..............17 climatic requirements. For example, cer- Suppliers .......................... 18 If all the matter in the universe except the tain species do best in sandy soils, while nematodes were swept away, our world would oth ers favor clay soils.
    [Show full text]
  • The Internal Transcribed Spacer Region of <I>Belonolaimus</I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 1997 The Internal Transcribed Spacer Region of Belonolaimus (Nemata: Belonolaimidae) T. Cherry Lincoln High School, Lincoln, NE A. L. Szalanski University of Nebraska-Lincoln T. C. Todd Kansas State University Thomas O. Powers University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Cherry, T.; Szalanski, A. L.; Todd, T. C.; and Powers, Thomas O., "The Internal Transcribed Spacer Region of Belonolaimus (Nemata: Belonolaimidae)" (1997). Papers in Plant Pathology. 200. https://digitalcommons.unl.edu/plantpathpapers/200 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Nematology 29 (1) :23-29. 1997. © The Society of Nematologists 1997. The Internal Transcribed Spacer Region of Belonolaimus (Nemata: Belonolaimidae) 1 T. CHERRY, 2 A. L. SZALANSKI, 3 T. C. TODD, 4 AND T. O. POWERS3 Abstract: Belonolaimus isolates from six U.S. states were compared by restriction endonuclease diges- tion of amplified first internal transcribed spacer region (ITS1) of the nuclear ribosomal genes. Seven restriction enzymes were selected for evaluation based on restriction sites inferred from the nucleotide sequence of a South Carolina Belonolaimus isolate. Amplified product size from individuals of each isolate was approximately 700 bp. All Midwestern isolates gave distinct restriction digestion patterns. Isolates identified morphologically as Belonolaimus longicaudatus from Florida, South Carolina, and Palm Springs, California, were identical for ITS1 restriction patterns.
    [Show full text]
  • Exotic Nematodes of Grains CP
    INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY Generic Contingency Plan Exotic nematodes affecting the grains industry Specific examples detailed in this plan: Maize cyst nematode (Heterodera zeae), Soybean cyst nematode (Heterodera glycines) and Chickpea cyst nematode (Heterodera ciceri) Plant Health Australia August 2013 Disclaimer The scientific and technical content of this document is current to the date published and all efforts have been made to obtain relevant and published information on these pests. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au An electronic copy of this plan is available from the web site listed above. © Plant Health Australia Limited 2013 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person.
    [Show full text]
  • Numerical Taxonomy Helps Identification of Merliniidae
    Journal of Nematology 49(2):207–222. 2017. Ó The Society of Nematologists 2017. Numerical Taxonomy Helps Identification of Merliniidae and Telotylenchidae (Nematoda: Tylenchoidea) from Iran REZA GHADERI,HABIBALLAH HAMZEHZARGHANI, AND AKBAR KAREGAR Abstract: Numerical taxonomy was used for identification and grouping of the genera, species, and populations in the families Merliniidae and Telotylenchidae. The variability of each of 44 morphometric characters was evaluated by calculation of the co- efficient of variability (CV) and the ratio of extremes (max/min) in the range of 1,020 measured females. Also correlation and regression analyses were made between characters to find potential collinearities. Hierarchical cluster analysis (HCA) was used for (i) grouping 21 genera in the superfamily Dolichodoroidea based on literature data coded for states of 18 diagnostic characters, and (ii) for grouping Iranian populations belonging to selected genera. Furthermore, STEPDISC analysis was used for (i) grouping 11 genera of Merliniidae and Telotylenchidae based on the measurements of 35 characters from 1,007 Iranian female specimens, and (ii) grouping measured females of eight species of Amplimerlinius and Pratylenchoides. The multivariate data analysis approach showed robust enough to summarize relationship between morphometric characters and group genera, species, and populations of the nematodes and in particular help to identify the genera and species of Amplimerlinius and Pratylenchoides. Key words: Amplimerlinius, correlation, hierarchical cluster analysis, Pratylenchoides, principal component analysis. The families Merliniidae Siddiqi, 1971 and Teloty- 2008; Holterman et al., 2009; van Megen et al., 2009; lenchidae Siddiqi, 1960 are among the most problem- Panahandeh et al., 2014; Ghaderi et al., 2014) in- atical taxa in Tylenchida Thorne, 1949\Tylenchomorpha formation strongly support placement of Pratylen- De Ley and Blaxter, 2002.
    [Show full text]
  • Small RNA Sequencing Reveals Regulatory Roles of Micrornas in the Development of Meloidogyne Incognita
    International Journal of Molecular Sciences Article Small RNA Sequencing Reveals Regulatory Roles of MicroRNAs in the Development of Meloidogyne incognita Huawei Liu 1,2, Robert L. Nichols 3,*, Li Qiu 2,4, Runrun Sun 2,5, Baohong Zhang 2 and Xiaoping Pan 2,* 1 College of Life Sciences, Northwest A&F University, Yangling 712100, China; [email protected] 2 Department of Biology, East Carolina University, Greenville, NC 27858, USA; [email protected] (L.Q.); [email protected] (R.S.); [email protected] (B.Z.) 3 Cotton Incorporated, Cary, NC 27513, USA 4 College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China 5 Henan Institute of Science and Technology, Xinxiang 453003, China * Correspondence: [email protected] (R.L.N.); [email protected] (X.P.); Tel.: +1-252-328-5443-16 (X.P.); Fax: +1-252-328-4718 (X.P.) Received: 18 September 2019; Accepted: 30 October 2019; Published: 2 November 2019 Abstract: MicroRNAs (miRNAs) are an extensive class of small regulatory RNAs. Knowing the specific expression and functions of miRNAs during root-knot nematode (RKN) (Meloidogyne incognita) development could provide fundamental information about RKN development as well as a means to design new strategies to control RKN infection, a major problem of many important crops. Employing high throughput deep sequencing, we identified a total of 45 conserved and novel miRNAs from two developmental stages of RKN, eggs and J2 juveniles, during their infection of cotton (Gossypium hirsutum L.). Twenty-one of the miRNAs were differentially expressed between the two stages. Compared with their expression in eggs, two miRNAs were upregulated (miR252 and miRN19), whereas 19 miRNAs were downregulated in J2 juveniles.
    [Show full text]
  • Nematode Taxonomy: from Morphology to Metabarcoding
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | SOIL Discuss., 2, 1175–1220, 2015 www.soil-discuss.net/2/1175/2015/ doi:10.5194/soild-2-1175-2015 SOILD © Author(s) 2015. CC Attribution 3.0 License. 2, 1175–1220, 2015 This discussion paper is/has been under review for the journal SOIL. Please refer to the Nematode taxonomy: corresponding final paper in SOIL if available. from morphology to metabarcoding Nematode taxonomy: from morphology to M. Ahmed et al. metabarcoding Title Page M. Ahmed1, M. Sapp2, T. Prior2, G. Karssen3, and M. Back1 Abstract Introduction 1Harper Adams University, Newport, TF10 8NB, Shropshire, UK 2Fera, Sand Hutton, YO41 1LZ, North Yorkshire, UK Conclusions References 3 National Plant Protection Organization Geertjesweg 15, 6706 EA, Wageningen, Tables Figures the Netherlands Received: 6 October 2015 – Accepted: 20 October 2015 – Published: 18 November 2015 J I Correspondence to: M. Ahmed ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1175 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract SOILD Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators 2, 1175–1220, 2015 and as key players in nutrient cycling has been well documented. Some groups of ne- 5 matodes are also known to cause significant losses to crop production. In spite of this, Nematode taxonomy: knowledge of their diversity is still limited due to the difficulty in achieving species iden- from morphology to tification using morphological characters.
    [Show full text]
  • Amended Descriptions of Belonolaimus Gracilis Steiner, 1949 and B
    198 PROCEEDINGS OF THE [VOL. 28, No. 2 Amended Descriptions of Belonolaimus gracilis Steiner, 1949 and B. longicaudatus Ran, 1958 (Nematoda: Tylenchida) * GEORGE J. RAU** The genus Belonolaimus was established with B. gracilis as the only species (Steiner, 1949). All populations of the genus were usually referred to this species until 1958, when Rau, on the basis of extensive collections, described B. longicaudatus and expressed the opinion that this species, not B. gracilis, is the common sting nematode in the southeastern United States. This opin- ion was based on the fact that collections made in the vicinity of Ocala, the type location for B. gracilis, and in many other parts of Florida did not contain nematodes corresponding to the description of this species. Since 1958, many additional collections of Belonolaimus longicaudatus have been made, and sting nematodes corresponding in most details to the description of B. gracilis have been found around the roots of long leaf pine (Pinus palustris Mill.) in the Ocala National Forest near Ocala, Florida. This is the reported type location, and the nematodes were successfully transferred to the reported type host, slash pine (Pinus elliottii Engelm. (P. caribaea Morelet)), growing only on Lakewood sand, in the greenhouse. Steiner also reported long leaf pine as a host of B. gracilis. The purposes of this paper are to amend the original description of B. gracilis, record variation in this species, amend the description of B. longi- caudatns by correction of some of the dimensions originally given, and pre- sent additional information on another collection from the type location.
    [Show full text]