Avalanche Fatalities During Atmospheric River Events in the Western United States

Total Page:16

File Type:pdf, Size:1020Kb

Avalanche Fatalities During Atmospheric River Events in the Western United States MAY 2017 H A T C H E T T E T A L . 1359 Avalanche Fatalities during Atmospheric River Events in the Western United States a b c,d a,d BENJAMIN J. HATCHETT, SUSAN BURAK, JONATHAN J. RUTZ, NINA S. OAKLEY, e a EDWARD H. BAIR, AND MICHAEL L. KAPLAN a Division of Atmospheric Science, Desert Research Institute, Reno, Nevada b Snow Survey Associates, Bishop, California c Western Region Headquarters, National Weather Service, Salt Lake City, Utah d Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California e Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California (Manuscript received 12 September 2016, in final form 5 February 2017) ABSTRACT The occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (,25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results dem- onstrate that there exists regional consistency between snow avalanche climates, derived AR contributions to cool season precipitation, and percentages of avalanche fatalities during ARs. The intensity of water vapor transport and topographic corridors favoring inland water vapor transport may be used to help identify pe- riods of increased avalanche hazard in intermountain and continental snow avalanche climates prior to AR landfall. Several recently developed AR forecast tools applicable to avalanche forecasting are highlighted. 1. Introduction average of 28 deaths per year in the United States (Colorado Avalanche Information Center 2015). Slab avalanches are In mountain environments of the conterminous western the most dangerous type of avalanche and result when a United States (wUS), snow avalanches are a dangerous type failure initiates and propagates outward in a weak layer of mass movement that pose significant hazards to life and underlying a cohesive slab of snow, causing the slab to be- property, yielding millions of dollars per year in economic come unsupported (Schweizer et al. 2003). Fatal slab ava- losses (National Research Council 1990; Mock and lanches are commonly triggered by human actions but also Birkeland 2000). Since 1995, avalanches have caused an occur because of natural release mechanisms resulting from loading by newly fallen or wind-deposited snow. Forecasting slab avalanche occurrence is a major challenge because of Denotes content that is immediately available upon publica- the complex interactions among terrain, snowpack, and tion as open access. meteorology (LaChapelle 1980; Schweizer et al. 2003, 2008). Furthermore, avalanches are not always weather related Supplemental information related to this paper is available at the and by nature are multivariate problems (Mock and Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0219.s1. Birkeland 2000). Prior studies on the synoptic conditions resulting in Corresponding author e-mail: Benjamin J. Hatchett, benjamin. large avalanches showed the presence of an upstream [email protected] 500-hPa trough (Mock and Birkeland 2000; Birkeland DOI: 10.1175/JHM-D-16-0219.1 Ó 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). 1360 JOURNAL OF HYDROMETEOROLOGY VOLUME 18 FIG. 1. (a) Example AR along the wUS identified using SSM/I satellite-derived IWV (filled colors). (b) Total U.S. avalanche fatalities by water year (gray bars) and fatalities linked to AR conditions in the wUS (blue bars). Annual percentages of wUS fatalities associated with ARs are listed as a percent of total U.S. fatalities. (c) Choropleth map of the wUS where colors are created from blending the percentage of AR-derived cool season precipitation in blues (Rutz et al. 2014) and the percentage of avalanche fatalities during AR events in yellows. The Mock and Birkeland (2000) snow climates are represented by overlain cross hatches (continental), single hatches (intermountain), or no hatches (coastal). et al. 2001), although other synoptic patterns can lead to equivalent (SWE; Serreze et al. 2001). While studies avalanches (Esteban et al. 2005; Muntán et al. 2009). linking ARs to avalanches do exist (Hansen and Here we focus on atmospheric conditions characterized Underwood 2012), they are limited to a few regions by narrow plumes of concentrated water vapor flux and a small number of case studies. Anecdotal evidence called atmospheric rivers (ARs; Zhu and Newell 1998; exists for a linkage between ARs and avalanches and is Ralph et al. 2004). ARs originate as a combination of used by avalanche forecast centers and the public, but local convergence along the warm conveyor belt and this connection has not yet been fully documented in cold frontal region of the extratropical cyclone and as detail. Here we attempt to quantify the linkage between direct poleward transport of tropical moisture (Bao ARs and deadly avalanches using readily available and et al. 2006). ARs are often identified via satellite as archived data. elongated regions of enhanced column-integrated water We hypothesize that since ARs are associated with vapor (IWV; Fig. 1a) and have important roles in wUS extreme cool season precipitation, they should contrib- hydrometeorology. They frequently contribute to cool ute to avalanches by favoring snowfall in excess of the season (defined as November–April) extreme precipita- 30-cm storm total threshold required for avalanche ac- tion and flooding events (Ralph et al. 2006; Dettinger tivity established by Atwater (1954) and supported by et al. 2011; Alexander et al. 2015; Swales et al. 2016) Bair (2013) and Perla (1970). To address this hypothesis, and supply large percentages of climatological pre- we illustrate the relationships between AR conditions cipitation (Rutz et al. 2014), with mean largest 72-h and avalanche fatalities throughout the wUS and place events often contributing 10%–25% of total snow water this information into the context of established snow MAY 2017 H A T C H E T T E T A L . 1361 avalanche climate and hydroclimate regimes. We dem- variables including temperature, snowfall, SWE, rain- onstrate the importance of recently identified prefer- fall, and December snowpack vertical temperature ential pathways for inland moisture transport (Rutz gradient. Large snowpack temperature gradients con- et al. 2015; Swales et al. 2016) and show how integrated tribute to the formation of weak layers in intermountain water vapor transport can be used as a tool to identify and continental climate snowpacks and lead to sub- magnitudes of precipitation and the extent of inland sequent deep slab avalanches (Schweizer et al. 2003; penetration. We then demonstrate that heavy to ex- Marienthal et al. 2015). In coastal climates, avalanches treme precipitation and rapid snow loading in excess of often result from failures occurring within storm snow commonly used thresholds for avalanche activity oc- layers or at the old–new snow interface (Bair 2013). curred during a large fraction of the avalanche fatalities coinciding with AR conditions. Finally, we highlight 3. Methods several recently developed AR forecast tools that can be used by avalanche forecasters, emergency managers, The latitude and longitude of each avalanche inci- and the general public. These tools can be used to more dent was estimated from archived avalanche reports. precisely predict timing, location, and inland penetra- SNOTEL observations from stations located within a tion of ARs. 0.58 radius of each incident (eight stations on average) were used to calculate the precipitation percentiles from the period of record (typically 1981–2014) nonzero cool 2. Data season precipitation days. We compared these values Archived avalanche incidents in the wUS between with the maximum daily precipitation percentiles ob- November 1998 and April 2014 were acquired from served between 4 days prior to the avalanche event day Atkins (2007) and the Colorado Avalanche Information and 1 day after. This period covers complete storm event Center (2015). Because of a lack of archived nonfatal precipitation at time scales relevant for avalanche haz- avalanche observations, we were unable to quantify the ard. Changes in SWE (hereafter DSWE) were calculated frequency of nonfatal avalanches during AR events in a as the difference in SWE over this 6-day period to meaningful manner. Atmospheric fields of 500-hPa geo- quantify total new snow loading. We also calculated the potential height, 700-hPa air temperature, meridional greatest 1- and 2-day change in SWE over the 6-day and zonal wind, and specific humidity on isobaric sur- window to estimate the maximum rates of new snow faces were derived from daily 32-km horizontal resolu- loading,
Recommended publications
  • DEC Avalanche Preparedness in the Adirondacks Brochure (PDF)
    BASIC AVALANCHE AWARENESS ADDITIONAL RESOURCES New York State Department of This brochure is designed to let the recreational Organizations Environmental Conservation user know that avalanche danger does exist in New York and gives basic ideas of what to look for U.S. Forest Service Avalanche Center PO Box 2356 and avoid. To learn more about avalanche Ketchum, Idaho, 83340 awareness consider attending professional Office Phone: (208) 622-0088 courses, reading and experience. www.fsavalanche.org Avalanche Westwide Avalanche Network Preparedness in the www.avalanche.org 1. Know basic avalanche rescue techniques. American Avalanche Association Adirondacks 2. Check the snow depth. www.avalanche.org/~aaap 3. Check how much new snow has fallen. Books 4. Practice safe route finding. Mountaineering: The Freedom of the Hills Published by The Mountaineer Books 5. Check the degree of the slope. Snow Sense: A Guide to Evaluating Snow Avalanche Hazard Published by Alaska Mountain Safety Center, Inc. 6. Check the terrain. 7. Carry basic avalanche rescue equipment. Thank You For Your 8. Never travel alone. Cooperation 9. Let someone know where you are going. NYSDEC - Region 5 Ray Brook, New York 12977 10. Do not be afraid to turn around. (518) 897-1200 Emergency Dispatch Number: (518) 891-0235 11. Use common sense. Visit the DEC Website at www.dec.ny.gov Photograph by: Ryland Loos Photograph by: Ryland Loos WHAT IS AN AVALANCHE? HOW CAN YOU KEEP FROM GETTING CAUGHT WHAT DO YOU DO WHEN CAUGHT IN AN IN AN AVALANCHE? AVALANCHE? An avalanche is a mass of snow sliding down a mountainside. Avalanches are also called You can reliably avoid avalanches by recognizing Surviving avalanches can depend on luck, but it is snowslides; there is no difference in these terms.
    [Show full text]
  • The Politics of Information in Famine Early Warning A
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Fixing Famine: The Politics of Information in Famine Early Warning A Dissertation submitted in partial satisfaction of the Requirements for the degree Doctor of Philosophy in Communication by Suzanne M. M. Burg Committee in Charge: Professor Robert B. Horwitz, Chair Professor Geoffrey C. Bowker Professor Ivan Evans Professor Gary Fields Professor Martha Lampland 2008 Copyright Suzanne M. M. Burg, 2008 All rights reserved. The Dissertation of Suzanne M. M. Burg is approved, and it is acceptable in quality and form for publication on microfilm: _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ Chair University of California, San Diego 2008 iii DEDICATION For my past and my future Richard William Burg (1932-2007) and Emma Lucille Burg iv EPIGRAPH I am hungry, O my mother, I am thirsty, O my sister, Who knows my sufferings, Who knows about them, Except my belt! Amharic song v TABLE OF CONTENTS Signature Page……………………………………………………………………. iii Dedication……………………………………………………………………….. iv Epigraph…………………………………………………………………………. v Table of Contents………………………………………………………………... vi List of Acronyms………………………………………………………………… viii List of Figures……………………………………………………………………. xi List of Tables…………………………………………………………………….. xii Acknowledgments……………………………………………………………….. xiii Vita……………………………………………………………………………….
    [Show full text]
  • Investigating the El Capitan Rock Avalanche
    BY GREG STOCK INVESTIGATING THE EL CapITAN ROCK AVALANCHE t 2:25 on the morning of March 26, 1872, one of avalanche, an especially large rockfall or rockslide that the largest earthquakes recorded in California extends far beyond the cliff where it originated. Most Ahistory struck along the Owens Valley fault near Yosemite Valley rockfall debris accumulates at the base the town of Lone Pine just east of the Sierra Nevada. The of the cliffs, forming a wedge-shaped deposit of talus. earthquake leveled most buildings in Lone Pine and sur- Occasionally, however, debris from a rock avalanche will rounding settlements, and killed 23 people. Although extend out much farther across the valley floor. seismographs weren’t yet available, the earthquake is esti- Geologist Gerald Wieczorek of the U.S. Geological mated to have been about a magnitude 7.5. Shock waves Survey and colleagues have identified at least five rock from the tembler radiated out across the Sierra Nevada. avalanche deposits in Yosemite Valley. The largest of these On that fateful morning, John Muir was sleeping in occurred in Tenaya Canyon, at the site of present-day a cabin near Black’s Hotel on the south side of Yosemite Mirror Lake. Sometime in the past, a rock formation on Valley, near present-day Swinging Bridge. The earth- the north wall of the canyon just east of and probably quake shook the naturalist out of bed. Realizing what similar in size to Washington Column collapsed into was happening, Muir bolted outside, feeling “both glad Tenaya Canyon. The rock debris piled up against the and frightened” and shouting “A noble earthquake!” He south canyon wall to a depth of over 100 feet.
    [Show full text]
  • Controlled Avalanche – a Regulated Voluntary Exposure Approach for Addressing
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.12.20062687; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Controlled Avalanche – A Regulated Voluntary Exposure Approach for Addressing 2 Covid-19 ₤ 3 Eyal Klement1* DVM, Alon Klement2 SJD, David Chinitz3 PhD, Alon Harel4 Dphill, Eyal 4 Fattal5 PhD, Ziv Klausner5 PhD 5 6 1. Koret School of Veterinary Medicine, Department of Epidemiology and Public 7 Health, the Hebrew University, Jerusalem, Israel 8 2. Buchmann Faculty of Law, Tel-Aviv University, Israel 9 3. Department of Health Policy and Management, School of Public Health, Hebrew 10 University, Jerusalem, Israel 11 4. Phillip and Estelle Mizock Chair in Administrative and Criminal Law, The Faculty of 12 Law, the Hebrew University, Jerusalem, Israel 13 5. Department of Applied Mathematics, Israel Institute for Biological Research, Ness- 14 Ziona, Israel 15 ₤ 16 All authors contributed equally to the manuscript 17 18 * Corresponding author: 19 Address: Koret School of Veterinary Medicine, The Robert H. Smith Faculty of 20 Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, 21 Rehovot 76100, Israel. 22 Tel: 972-8-9489560. Fax: 972-8-9489634 23 E-mail: [email protected] 24 25 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.04.12.20062687; this version posted April 22, 2020.
    [Show full text]
  • Avalanche Safety Tips
    Submit Education Center | Photo Gallery Contents Avalanche Awareness: 1. Why avalanche awareness? Surviving an avalanche 2. Who gets caught in avalanches? A true account 3. When and where avalanches happen 4. Anatomy of an avalanche Avalanche Books 5. Avalanche factors: what conditions cause an avalanche? Credits & Citations 6. How to determine if the snowpack is safe 7. Avalanche gear For more information, see our 8. Tips for avalanche survival list of other avalanche sites 9. Avalanche danger scale 10. Avalanche quick checks 1. Why avalanche awareness? Mountains attract climbers, skiers and tourists who scramble up and down the slopes, hoping to conquer peaks, each in their own way. Yet, to do this they must enter the timeless haunt of avalanches. For centuries, mountain dwellers and travelers have had to reckon with the deadly forces of snowy torrents descending with lightning speed down mountainsides. Researchers and experts are making progress in detection, prevention and safety measures, but avalanches still take their deadly toll throughout the world. Each year, avalanches claim more than 150 lives worldwide, a number that has been increasing over the © Richard Armstrong past few decades. Thousands more are caught in avalanches, partly buried or injured. Everyone from An avalanche in motion. snowmobilers to skiers to highway motorists are (Photograph courtesy of caught in the "White Death." Most are fortunate Richard Armstrong, National enough to survive. Snow and Ice Data Center.) This is meant to be a brief guide about the basics of avalanche awareness and safety. For more in depth information, several sources are listed under "More avalanche resources" in the last section of these pages.
    [Show full text]
  • 1 Snow-Avalanche Impact Craters in Southern Norway: Their Morphology and 2 Dynamics Compared with Small Terrestrial Meteorite Craters
    1 Snow-avalanche impact craters in southern Norway: their morphology and 2 dynamics compared with small terrestrial meteorite craters. 3 4 5 John A. Matthews1*, Geraint Owen1, Lindsey J. McEwen2, Richard A. Shakesby1, 6 Jennifer L. Hill2, Amber E. Vater1 and Anna C. Ratcliffe1 7 8 1 Department of Geography, College of Science, Swansea University, Singleton Park, 9 Swansea SA2 8PP, Wales, UK 10 11 2 Department of Geography and Environmental Management, University of the West 12 of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK 13 14 15 * Corresponding author: [email protected] 16 17 18 ABSTRACT 19 20 This regional inventory and study of a globally uncommon landform type reveals 21 similarities in form and process between craters produced by snow-avalanche and 22 meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, 23 range 10–185 m) were investigated through field research, aerial photographic 24 interpretation and analysis of topographic maps. The craters are sited on valley 25 bottoms or lake margins at the foot of steep avalanche paths (α = 28–59°), generally 26 with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) 27 typically exceeds ~15°. Crater diameter correlates with the area of the avalanche start 28 zone, which points to snow-avalanche volume as the main control on crater size. 29 Proximal erosional scars (‘blast zones’) up to 40 m high indicate up-range ejection of 30 material from the crater, assisted by air-launch of the avalanches and impulse waves 31 generated by their impact into water-filled craters.
    [Show full text]
  • Jeff Lukas, Western Water Assessment CIRES, University of Colorado Boulder Image: Shaune Goleman
    http://wwa.colorado.edu Snowpocalypse A 2019 feast after a 2018 famine 2019 Annual Seminar Colorado River District Grand Junction, CO – September 18, 2019 Jeff Lukas, Western Water Assessment CIRES, University of Colorado Boulder Image: Shaune Goleman http://wwa.colorado.edu US Drought Monitor for Upper Colorado River Basin October 2, 2018 Source: US Drought Monitor; https://droughtmonitor.unl.edu/ http://wwa.colorado.edu CBRFC modeled antecedent soil moisture – Nov 2018 • Much below normal almost everywhere in Upper Basin • Near-record-low in San Juan and Gunnison basins Source: NOAA CBRFC; https://www.cbrfc.noaa.gov/ http://wwa.colorado.edu CBRFC forecast evolution plot – Lake Powell Apr-Jul inflows 10.40 maf 9.20 maf 4.55 maf Source: NOAA CBRFC; https://www.cbrfc.noaa.gov/wsup/ http://wwa.colorado.edu February – persistent trough, favorable flow http://wwa.colorado.edu March 1st-15th – persistent trough, favorable flow http://wwa.colorado.edu Rank of Feb-Mar 2019 precip at SNOTEL sites Source: NRCS Interactive Map; https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/imap http://wwa.colorado.edu “Historic” avalanche cycle in early March in CO mts From February 28th - March 10th: • 10-15 feet of snow • 6”-12” of SWE • Avalanche activity not seen since 1950s Conundrum Creek slide down Highlands Ridge, Aspen Source: Colorado Avalanche Information Center, from Telluride Helitrax http://wwa.colorado.edu Feb-Mar Upper Basin precip, 1900-2019 2019 Source: NOAA NCEI Climate at a Glance; https://www.ncdc.noaa.gov/cag/ http://wwa.colorado.edu
    [Show full text]
  • Debris Flow, Debris Avalanche, and Flood Hazards at and Downstream from Mount Rainier, Washington Introduction
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY HYDROLOGIC U.S. GEOLOGICAL SURVEY INVESTIGATIONS ATLAS HA-729 DEBRIS FLOW, DEBRIS AVALANCHE, AND FLOOD HAZARDS AT AND DOWNSTREAM FROM MOUNT RAINIER, WASHINGTON By K.M. Scott and J.W. Vallance ABSTRACT of the mountain. Readers are encouraged to consult the comprehensive reports (Scott and others, 1992, Mount Rainier volcano has produced many large 1995) for details of the case-history selection and the debris flows and debris avalanches during the last 10,000 rationale for the case-history approach. years. These flows have periodically traveled more than Both the previous report (Scott and others, 1992) 100 kilometers from the volcano to inundate parts of and this atlas, which is a map portrayal of the hazard- the now-populated Puget Sound Lowland. Meteoro­ related conclusions in the 1992 report, conform to logical floods also have caused damage, but future the requirements and recommendations of the Wash­ effects will be partly mitigated by reservoirs. ington Growth Management Act of 1990 {Washing­ Mount Rainier presents the most severe flow risks ton (State) Administrative Code, 19901. The act of any volcano in the United States. Volcanic debris establishes standards and definitions for either man­ flows (lahars) are of two types: (1) cohesive, relatively dated or optional land-use standards in response to, high clay flows originating as debris avalanches, and among other factors, volcanic hazards. According to (2) noncohesive flows with less clay that begin most the act (chapter 365-190, p. 11), volcanic hazards commonly as meltwater surges. Three case histories "shall include areas subject to * * * debris avalanche(s), represent important subpopulations of flows with known inundation by debris flows, mudflows, or related flooding magnitudes and frequencies.
    [Show full text]
  • Complete List of Contents
    Complete List of Contents Volume 1 Publisher’s Note ............................................................................................... vii Introduction .................................................................................................... xi Contributors .................................................................................................. xiii Complete List of Contents .......................................................................... xvii ■ Overviews Avalanches ......................................................................................................... 1 Blizzards, Freezes, Ice Storms, and Hail ........................................................ 12 Droughts .......................................................................................................... 26 Dust Storms and Sandstorms ......................................................................... 34 Earthquakes ..................................................................................................... 40 El Niño ............................................................................................................. 57 Epidemics ........................................................................................................ 63 Explosions ....................................................................................................... 79 Famines ............................................................................................................ 87 Fires .................................................................................................................
    [Show full text]
  • Avalanche Problem Essentials – Storm Slabs Development
    1 Avalanche Problem Essentials – Storm Slabs This document is part of “Decision Making in Avalanche Terrain: a fieldbook for winter backcountry users” by Pascal Haegeli, Roger Atkins and Karl Klassen and provides in‐ depth background information for on the topic of Avalanche Problem Essentials. For additional background information on the topics covered in the field book visit www.avalanche.ca/cac/decisionmaking Storm snow avalanches are caused by a cohesive slab of new snow overloading the bond at an interface within the storm snow or at the old surface if it forms an underlying weak layer. These slabs are often quite soft compared to other slab types and this can fool people into underestimating the potential for a slab avalanche. The moving snow often involves a significant powder cloud and the avalanche debris tends to be soft and powdery. Storm snow avalanches tend to release below the trigger, making it somewhat easier to escape if you trigger one. During and shortly after significant storms involving rapid accumulations of significant new snow amounts, storm snow avalanches can be very large and destructive. Development Storm snow instabilities form when a storm deposits a slab of stronger snow over a weaker layer of storm snow, or when the upper layers of storm snow settle and strengthen into a stronger slab resting on relatively weaker storm snow. Alternatively, storm snow can fail at the old snow interface that was on the surface when the storm started. Time of the Season Storm snow avalanches can occur at any time of the season. Weather Patterns The relative weak layers and slabs required to produce storm snow avalanches are formed by fluctuations in the snow types falling in the storm.
    [Show full text]
  • Rioting in America 1St Edition Pdf, Epub, Ebook
    RIOTING IN AMERICA 1ST EDITION PDF, EPUB, EBOOK Paul A Gilje | 9780253212627 | | | | | Rioting in America 1st edition PDF Book Gilje suggest that part of the purpose of these assaults was to destroy black wealth. Gilje argues that we cannot fully comprehend the history of the United States without an understanding of the impact of rioting. January 21, January 11, Search within store. Bloomberg BusinessWeek. Public Broadcasting Service. The tip of an Iceberg. October 10, While none of the dozen or so major riots that took place in made it to the list above, taken together as a whole the riots become significant to American history. Live Coronavirus updates. France You all know the story -- 63 people died, racial tensions between Korean and black communities intensified, and Adam Sandler became famous for mocking George H. Negroes and The Gun: the black tradition of arms. Shipping to: Worldwide. Protestors could be seen running back in the direction they came. March 6, The Washington Post. November 10, Retrieved June 26, Rioting in America 1st edition Writer Landslide Avalanche Mudflow Debris flow Lahar. Stroud, Gloucestershire: History Press. October 26, This amount is subject to change until you make payment. The San Francisco Chronicle. Marsha rated it liked it Jan 23, April 22, Please enter a number less than or equal to 1. Archived from the original on August 28, April 23, October 15, October 18, March 23, Alasdair Ekpenyong marked it as to-read May 28, April 15, Retrieved August 14, July 4, Lists with This Book. November 30, Monday morning local time. This item will be shipped through the Global Shipping Program and includes international tracking.
    [Show full text]
  • What Are Landslides and How Do They Occur?
    Stable Unstable friction > downhill downhill > friction FACT SHEET: downhill WHAT ARE LANDSLIDES? WASHINGTON GEOLOGICALforce SURVEY friction downhill friction force gravity What Are Landslides And How Do They Occur?gravity Stable Unstable A landslide generally refers to the downhill movement of rock, soil, THE ROLE OF FRICTION friction > downhill downhill > friction or debris. The term landslide can also refer to the deposit that is The amount of friction between a deposit of rock or soil and the created by a landslide event. This fact sheet is meant to provide downhill slope that it rests on plays a large role in when landslides happen. force general information only; real landslides have many variables. Imagine trying to slide a large rock along a flat surface—it's very friction downhill THE ROLE OF GRAVITY difficult because of the friction between the rock and the frictionsurface. force gravity Pushing the rock is easier if the surface slopes downhill or is slippery. gravity Landslides nearly always move down a slope. This is because the The same is true for landslides—steeper slopes have less friction, force of gravity—which acts to move material downhill—is usually making landslides more common. Any change to the Earth's surface counteracted by two things: (1) the internal strength of the material, that increases the slope (for example, river incision or the removal and (2) the friction of the material on the slope. A landslide occurs of material at the base of a slope by humans) or that reduces the because the force of gravity becomes greater than either friction or friction of a slope (such as the addition of water) can increase the the internal strength of the rock, soil, or sediment.
    [Show full text]