Special Publication 117A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DEC Avalanche Preparedness in the Adirondacks Brochure (PDF)
BASIC AVALANCHE AWARENESS ADDITIONAL RESOURCES New York State Department of This brochure is designed to let the recreational Organizations Environmental Conservation user know that avalanche danger does exist in New York and gives basic ideas of what to look for U.S. Forest Service Avalanche Center PO Box 2356 and avoid. To learn more about avalanche Ketchum, Idaho, 83340 awareness consider attending professional Office Phone: (208) 622-0088 courses, reading and experience. www.fsavalanche.org Avalanche Westwide Avalanche Network Preparedness in the www.avalanche.org 1. Know basic avalanche rescue techniques. American Avalanche Association Adirondacks 2. Check the snow depth. www.avalanche.org/~aaap 3. Check how much new snow has fallen. Books 4. Practice safe route finding. Mountaineering: The Freedom of the Hills Published by The Mountaineer Books 5. Check the degree of the slope. Snow Sense: A Guide to Evaluating Snow Avalanche Hazard Published by Alaska Mountain Safety Center, Inc. 6. Check the terrain. 7. Carry basic avalanche rescue equipment. Thank You For Your 8. Never travel alone. Cooperation 9. Let someone know where you are going. NYSDEC - Region 5 Ray Brook, New York 12977 10. Do not be afraid to turn around. (518) 897-1200 Emergency Dispatch Number: (518) 891-0235 11. Use common sense. Visit the DEC Website at www.dec.ny.gov Photograph by: Ryland Loos Photograph by: Ryland Loos WHAT IS AN AVALANCHE? HOW CAN YOU KEEP FROM GETTING CAUGHT WHAT DO YOU DO WHEN CAUGHT IN AN IN AN AVALANCHE? AVALANCHE? An avalanche is a mass of snow sliding down a mountainside. Avalanches are also called You can reliably avoid avalanches by recognizing Surviving avalanches can depend on luck, but it is snowslides; there is no difference in these terms. -
The Politics of Information in Famine Early Warning A
UNIVERSITY OF CALIFORNIA, SAN DIEGO Fixing Famine: The Politics of Information in Famine Early Warning A Dissertation submitted in partial satisfaction of the Requirements for the degree Doctor of Philosophy in Communication by Suzanne M. M. Burg Committee in Charge: Professor Robert B. Horwitz, Chair Professor Geoffrey C. Bowker Professor Ivan Evans Professor Gary Fields Professor Martha Lampland 2008 Copyright Suzanne M. M. Burg, 2008 All rights reserved. The Dissertation of Suzanne M. M. Burg is approved, and it is acceptable in quality and form for publication on microfilm: _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ Chair University of California, San Diego 2008 iii DEDICATION For my past and my future Richard William Burg (1932-2007) and Emma Lucille Burg iv EPIGRAPH I am hungry, O my mother, I am thirsty, O my sister, Who knows my sufferings, Who knows about them, Except my belt! Amharic song v TABLE OF CONTENTS Signature Page……………………………………………………………………. iii Dedication……………………………………………………………………….. iv Epigraph…………………………………………………………………………. v Table of Contents………………………………………………………………... vi List of Acronyms………………………………………………………………… viii List of Figures……………………………………………………………………. xi List of Tables…………………………………………………………………….. xii Acknowledgments……………………………………………………………….. xiii Vita………………………………………………………………………………. -
2021 Oregon Seismic Hazard Database: Purpose and Methods
State of Oregon Oregon Department of Geology and Mineral Industries Brad Avy, State Geologist DIGITAL DATA SERIES 2021 OREGON SEISMIC HAZARD DATABASE: PURPOSE AND METHODS By Ian P. Madin1, Jon J. Francyzk1, John M. Bauer2, and Carlie J.M. Azzopardi1 2021 1Oregon Department of Geology and Mineral Industries, 800 NE Oregon Street, Suite 965, Portland, OR 97232 2Principal, Bauer GIS Solutions, Portland, OR 97229 2021 Oregon Seismic Hazard Database: Purpose and Methods DISCLAIMER This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. This publication cannot substitute for site-specific investigations by qualified practitioners. Site-specific data may give results that differ from the results shown in the publication. WHAT’S IN THIS PUBLICATION? The Oregon Seismic Hazard Database, release 1 (OSHD-1.0), is the first comprehensive collection of seismic hazard data for Oregon. This publication consists of a geodatabase containing coseismic geohazard maps and quantitative ground shaking and ground deformation maps; a report describing the methods used to prepare the geodatabase, and map plates showing 1) the highest level of shaking (peak ground velocity) expected to occur with a 2% chance in the next 50 years, equivalent to the most severe shaking likely to occur once in 2,475 years; 2) median shaking levels expected from a suite of 30 magnitude 9 Cascadia subduction zone earthquake simulations; and 3) the probability of experiencing shaking of Modified Mercalli Intensity VII, which is the nominal threshold for structural damage to buildings. -
Recommended Guidelines for Liquefaction Evaluations Using Ground Motions from Probabilistic Seismic Hazard Analyses
RECOMMENDED GUIDELINES FOR LIQUEFACTION EVALUATIONS USING GROUND MOTIONS FROM PROBABILISTIC SEISMIC HAZARD ANALYSES Report to the Oregon Department of Transportation June, 2005 Prepared by Stephen Dickenson Associate Professor Geotechnical Engineering Group Department of Civil, Construction and Environmental Engineering Oregon State University ODOT Liquefaction Hazard Assessment using Ground Motions from PSHA Page 2 ABSTRACT The assessment of liquefaction hazards for bridge sites requires thorough geotechnical site characterization and credible estimates of the ground motions anticipated for the exposure interval of interest. The ODOT Bridge Design and Drafting Manual specifies that the ground motions used for evaluation of liquefaction hazards must be obtained from probabilistic seismic hazard analyses (PSHA). This ground motion data is routinely obtained from the U.S. Geologocal Survey Seismic Hazard Mapping program, through its interactive web site and associated publications. The use of ground motion parameters derived from a PSHA for evaluations of liquefaction susceptibility and ground failure potential requires that the ground motion values that are indicated for the site are correlated to a specific earthquake magnitude. The individual seismic sources that contribute to the cumulative seismic hazard must therefore be accounted for individually. The process of hazard de-aggregation has been applied in PSHA to highlight the relative contributions of the various regional seismic sources to the ground motion parameter of interest. The use of de-aggregation procedures in PSHA is beneficial for liquefaction investigations because the contribution of each magnitude-distance pair on the overall seismic hazard can be readily determined. The difficulty in applying de-aggregated seismic hazard results for liquefaction studies is that the practitioner is confronted with numerous magnitude-distance pairs, each of which may yield different liquefaction hazard results. -
1. Geology and Seismic Hazards
8 PUBLIC SAFETY ELEMENT As required by State law, the Public Safety Element addresses the protection of the community from unreasonable risks from natural and manmade haz- ards. This Element provides information about risks in the Eden Area and delineates policies designed to prepare and protect the community as much as possible from the effects of: ♦ Geologic hazards, including earthquakes, ground-shaking, liquefaction and landslides. ♦ Flooding, including dam failures and inundation, tsunamis and seiches. ♦ Wildland fires. ♦ Hazardous materials. This Element also contains information and policies regarding general emer- gency preparedness. Each section includes background information on the particular hazard followed by goals, policies and actions designed to minimize risk for Eden Area residents. The Public Safety Element establishes mechanisms to prepare for and reduce death, injuries and damage to property from public safety hazards like flood- ing, fires and seismic events. Hazards are an unavoidable aspect of life, and the Public Safety Element cannot eliminate risk completely. Instead, the Element contains policies to create an acceptable level of risk. 1. GEOLOGY AND SEISMIC HAZARDS Earthquakes and secondary seismic hazards such as ground-shaking, liquefac- tion and landslides are the primary geologic hazards in the Eden Area. This section provides background on the seismic hazards that affect the Eden Area and includes goals, policies and actions to minimize these risks. 8-1 COUNTY OF ALAMEDA EDEN AREA GENERAL PLAN PUBLIC SAFETY ELEMENT A. Background Information As is the case in most of California, the Eden Area is subject to risks from seismic activity. The Eden Area is located in the San Andreas Fault Zone, one of the most seismically-active regions in the United States, which has generated numerous moderate to strong earthquakes in northern California and in the San Francisco Bay Area. -
Bray 2011 Pseudostatic Slope Stability Procedure Paper
Paper No. Theme Lecture 1 PSEUDOSTATIC SLOPE STABILITY PROCEDURE Jonathan D. BRAY 1 and Thaleia TRAVASAROU2 ABSTRACT Pseudostatic slope stability procedures can be employed in a straightforward manner, and thus, their use in engineering practice is appealing. The magnitude of the seismic coefficient that is applied to the potential sliding mass to represent the destabilizing effect of the earthquake shaking is a critical component of the procedure. It is often selected based on precedence, regulatory design guidance, and engineering judgment. However, the selection of the design value of the seismic coefficient employed in pseudostatic slope stability analysis should be based on the seismic hazard and the amount of seismic displacement that constitutes satisfactory performance for the project. The seismic coefficient should have a rational basis that depends on the seismic hazard and the allowable amount of calculated seismically induced permanent displacement. The recommended pseudostatic slope stability procedure requires that the engineer develops the project-specific allowable level of seismic displacement. The site- dependent seismic demand is characterized by the 5% damped elastic design spectral acceleration at the degraded period of the potential sliding mass as well as other key parameters. The level of uncertainty in the estimates of the seismic demand and displacement can be handled through the use of different percentile estimates of these values. Thus, the engineer can properly incorporate the amount of seismic displacement judged to be allowable and the seismic hazard at the site in the selection of the seismic coefficient. Keywords: Dam; Earthquake; Permanent Displacements; Reliability; Seismic Slope Stability INTRODUCTION Pseudostatic slope stability procedures are often used in engineering practice to evaluate the seismic performance of earth structures and natural slopes. -
Investigating the El Capitan Rock Avalanche
BY GREG STOCK INVESTIGATING THE EL CapITAN ROCK AVALANCHE t 2:25 on the morning of March 26, 1872, one of avalanche, an especially large rockfall or rockslide that the largest earthquakes recorded in California extends far beyond the cliff where it originated. Most Ahistory struck along the Owens Valley fault near Yosemite Valley rockfall debris accumulates at the base the town of Lone Pine just east of the Sierra Nevada. The of the cliffs, forming a wedge-shaped deposit of talus. earthquake leveled most buildings in Lone Pine and sur- Occasionally, however, debris from a rock avalanche will rounding settlements, and killed 23 people. Although extend out much farther across the valley floor. seismographs weren’t yet available, the earthquake is esti- Geologist Gerald Wieczorek of the U.S. Geological mated to have been about a magnitude 7.5. Shock waves Survey and colleagues have identified at least five rock from the tembler radiated out across the Sierra Nevada. avalanche deposits in Yosemite Valley. The largest of these On that fateful morning, John Muir was sleeping in occurred in Tenaya Canyon, at the site of present-day a cabin near Black’s Hotel on the south side of Yosemite Mirror Lake. Sometime in the past, a rock formation on Valley, near present-day Swinging Bridge. The earth- the north wall of the canyon just east of and probably quake shook the naturalist out of bed. Realizing what similar in size to Washington Column collapsed into was happening, Muir bolted outside, feeling “both glad Tenaya Canyon. The rock debris piled up against the and frightened” and shouting “A noble earthquake!” He south canyon wall to a depth of over 100 feet. -
Controlled Avalanche – a Regulated Voluntary Exposure Approach for Addressing
medRxiv preprint doi: https://doi.org/10.1101/2020.04.12.20062687; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Controlled Avalanche – A Regulated Voluntary Exposure Approach for Addressing 2 Covid-19 ₤ 3 Eyal Klement1* DVM, Alon Klement2 SJD, David Chinitz3 PhD, Alon Harel4 Dphill, Eyal 4 Fattal5 PhD, Ziv Klausner5 PhD 5 6 1. Koret School of Veterinary Medicine, Department of Epidemiology and Public 7 Health, the Hebrew University, Jerusalem, Israel 8 2. Buchmann Faculty of Law, Tel-Aviv University, Israel 9 3. Department of Health Policy and Management, School of Public Health, Hebrew 10 University, Jerusalem, Israel 11 4. Phillip and Estelle Mizock Chair in Administrative and Criminal Law, The Faculty of 12 Law, the Hebrew University, Jerusalem, Israel 13 5. Department of Applied Mathematics, Israel Institute for Biological Research, Ness- 14 Ziona, Israel 15 ₤ 16 All authors contributed equally to the manuscript 17 18 * Corresponding author: 19 Address: Koret School of Veterinary Medicine, The Robert H. Smith Faculty of 20 Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, 21 Rehovot 76100, Israel. 22 Tel: 972-8-9489560. Fax: 972-8-9489634 23 E-mail: [email protected] 24 25 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.04.12.20062687; this version posted April 22, 2020. -
Avalanche Safety Tips
Submit Education Center | Photo Gallery Contents Avalanche Awareness: 1. Why avalanche awareness? Surviving an avalanche 2. Who gets caught in avalanches? A true account 3. When and where avalanches happen 4. Anatomy of an avalanche Avalanche Books 5. Avalanche factors: what conditions cause an avalanche? Credits & Citations 6. How to determine if the snowpack is safe 7. Avalanche gear For more information, see our 8. Tips for avalanche survival list of other avalanche sites 9. Avalanche danger scale 10. Avalanche quick checks 1. Why avalanche awareness? Mountains attract climbers, skiers and tourists who scramble up and down the slopes, hoping to conquer peaks, each in their own way. Yet, to do this they must enter the timeless haunt of avalanches. For centuries, mountain dwellers and travelers have had to reckon with the deadly forces of snowy torrents descending with lightning speed down mountainsides. Researchers and experts are making progress in detection, prevention and safety measures, but avalanches still take their deadly toll throughout the world. Each year, avalanches claim more than 150 lives worldwide, a number that has been increasing over the © Richard Armstrong past few decades. Thousands more are caught in avalanches, partly buried or injured. Everyone from An avalanche in motion. snowmobilers to skiers to highway motorists are (Photograph courtesy of caught in the "White Death." Most are fortunate Richard Armstrong, National enough to survive. Snow and Ice Data Center.) This is meant to be a brief guide about the basics of avalanche awareness and safety. For more in depth information, several sources are listed under "More avalanche resources" in the last section of these pages. -
1 Snow-Avalanche Impact Craters in Southern Norway: Their Morphology and 2 Dynamics Compared with Small Terrestrial Meteorite Craters
1 Snow-avalanche impact craters in southern Norway: their morphology and 2 dynamics compared with small terrestrial meteorite craters. 3 4 5 John A. Matthews1*, Geraint Owen1, Lindsey J. McEwen2, Richard A. Shakesby1, 6 Jennifer L. Hill2, Amber E. Vater1 and Anna C. Ratcliffe1 7 8 1 Department of Geography, College of Science, Swansea University, Singleton Park, 9 Swansea SA2 8PP, Wales, UK 10 11 2 Department of Geography and Environmental Management, University of the West 12 of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK 13 14 15 * Corresponding author: [email protected] 16 17 18 ABSTRACT 19 20 This regional inventory and study of a globally uncommon landform type reveals 21 similarities in form and process between craters produced by snow-avalanche and 22 meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, 23 range 10–185 m) were investigated through field research, aerial photographic 24 interpretation and analysis of topographic maps. The craters are sited on valley 25 bottoms or lake margins at the foot of steep avalanche paths (α = 28–59°), generally 26 with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) 27 typically exceeds ~15°. Crater diameter correlates with the area of the avalanche start 28 zone, which points to snow-avalanche volume as the main control on crater size. 29 Proximal erosional scars (‘blast zones’) up to 40 m high indicate up-range ejection of 30 material from the crater, assisted by air-launch of the avalanches and impulse waves 31 generated by their impact into water-filled craters. -
Jeff Lukas, Western Water Assessment CIRES, University of Colorado Boulder Image: Shaune Goleman
http://wwa.colorado.edu Snowpocalypse A 2019 feast after a 2018 famine 2019 Annual Seminar Colorado River District Grand Junction, CO – September 18, 2019 Jeff Lukas, Western Water Assessment CIRES, University of Colorado Boulder Image: Shaune Goleman http://wwa.colorado.edu US Drought Monitor for Upper Colorado River Basin October 2, 2018 Source: US Drought Monitor; https://droughtmonitor.unl.edu/ http://wwa.colorado.edu CBRFC modeled antecedent soil moisture – Nov 2018 • Much below normal almost everywhere in Upper Basin • Near-record-low in San Juan and Gunnison basins Source: NOAA CBRFC; https://www.cbrfc.noaa.gov/ http://wwa.colorado.edu CBRFC forecast evolution plot – Lake Powell Apr-Jul inflows 10.40 maf 9.20 maf 4.55 maf Source: NOAA CBRFC; https://www.cbrfc.noaa.gov/wsup/ http://wwa.colorado.edu February – persistent trough, favorable flow http://wwa.colorado.edu March 1st-15th – persistent trough, favorable flow http://wwa.colorado.edu Rank of Feb-Mar 2019 precip at SNOTEL sites Source: NRCS Interactive Map; https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/imap http://wwa.colorado.edu “Historic” avalanche cycle in early March in CO mts From February 28th - March 10th: • 10-15 feet of snow • 6”-12” of SWE • Avalanche activity not seen since 1950s Conundrum Creek slide down Highlands Ridge, Aspen Source: Colorado Avalanche Information Center, from Telluride Helitrax http://wwa.colorado.edu Feb-Mar Upper Basin precip, 1900-2019 2019 Source: NOAA NCEI Climate at a Glance; https://www.ncdc.noaa.gov/cag/ http://wwa.colorado.edu -
Debris Flow, Debris Avalanche, and Flood Hazards at and Downstream from Mount Rainier, Washington Introduction
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY HYDROLOGIC U.S. GEOLOGICAL SURVEY INVESTIGATIONS ATLAS HA-729 DEBRIS FLOW, DEBRIS AVALANCHE, AND FLOOD HAZARDS AT AND DOWNSTREAM FROM MOUNT RAINIER, WASHINGTON By K.M. Scott and J.W. Vallance ABSTRACT of the mountain. Readers are encouraged to consult the comprehensive reports (Scott and others, 1992, Mount Rainier volcano has produced many large 1995) for details of the case-history selection and the debris flows and debris avalanches during the last 10,000 rationale for the case-history approach. years. These flows have periodically traveled more than Both the previous report (Scott and others, 1992) 100 kilometers from the volcano to inundate parts of and this atlas, which is a map portrayal of the hazard- the now-populated Puget Sound Lowland. Meteoro related conclusions in the 1992 report, conform to logical floods also have caused damage, but future the requirements and recommendations of the Wash effects will be partly mitigated by reservoirs. ington Growth Management Act of 1990 {Washing Mount Rainier presents the most severe flow risks ton (State) Administrative Code, 19901. The act of any volcano in the United States. Volcanic debris establishes standards and definitions for either man flows (lahars) are of two types: (1) cohesive, relatively dated or optional land-use standards in response to, high clay flows originating as debris avalanches, and among other factors, volcanic hazards. According to (2) noncohesive flows with less clay that begin most the act (chapter 365-190, p. 11), volcanic hazards commonly as meltwater surges. Three case histories "shall include areas subject to * * * debris avalanche(s), represent important subpopulations of flows with known inundation by debris flows, mudflows, or related flooding magnitudes and frequencies.