Origin and Potential Expansion of the Invasive Longan Lanternfly

Total Page:16

File Type:pdf, Size:1020Kb

Origin and Potential Expansion of the Invasive Longan Lanternfly biology Article Origin and Potential Expansion of the Invasive Longan Lanternfly, Pyrops candelaria (Hemiptera: Fulgoridae) in Taiwan You-Sheng Lin, Jhih-Rong Liao * , Shiuh-Feng Shiao * and Chiun-Cheng Ko † Department of Entomology, National Taiwan University, Taipei City 106332, Taiwan; [email protected] (Y.-S.L.); [email protected] (C.-C.K.) * Correspondence: [email protected] (J.-R.L.); [email protected] (S.-F.S.) † Deceased, 29 October 2020 this paper is dedicated to the memory of late Chiun-Cheng Ko. Simple Summary: The longan lanternfly Pyrops candelaria (Linnaeus), which feeds on longan trees, has invaded the main island of Taiwan. Thus, this study aimed to (1) trace the origin of invasion, (2) predict habitat suitability and (3) study the risk of lanternfly spread into crop cultivation areas. We reconstructed the longan lanternfly phylogeny to compare haplotypes among different regions. In addition, we predicted the habitat suitability for the species based on MaxEnt and then matched it with longan and pomelo cultivation areas. Our results indicated that the Taiwanese populations of longan lanternfly might originate from the Kinmen Islands and the plain areas of Taiwan are considered to have high habitat suitability. Abstract: The longan lanternfly Pyrops candelaria is a new invasive species on the main island of Taiwan. The introduction of an invasive species may negatively influence the native fauna, flora and environment. Thus, this study aimed to infer the invasion history, predict habitat suitability and Citation: Lin, Y.-S.; Liao, J.-R.; Shiao, potential expansion and assess the risk to crop cultivation areas in Taiwan. Genetic structures of P. S.-F.; Ko, C.-C. Origin and Potential candelaria from the main island of Taiwan and related regions were analyzed based on partial COI Expansion of the Invasive Longan and ND2 sequences. Additionally, machine learning MaxEnt was utilized to study habitat suitability. Lanternfly, Pyrops candelaria The results suggested that the Taiwanese populations may originate from the Kinmen Islands and (Hemiptera: Fulgoridae) in Taiwan. the plain areas of Taiwan are considered to have high habitat suitability. Furthermore, most of the Biology 2021, 10, 678. https:// cultivation areas of longan and pomelo crops showed high habitat suitability. doi.org/10.3390/biology10070678 Keywords: genetic structure; biological invasion; Pyrops candelaria; longan lanternfly; habitat suitability Academic Editor: Klaus H. Hoffmann Received: 21 June 2021 Accepted: 15 July 2021 1. Introduction Published: 17 July 2021 Biological invasions may pose threats to native fauna and flora, the economy and even Publisher’s Note: MDPI stays neutral human health [1], constituting a global economic and ecological threat [2–4]. Numerous with regard to jurisdictional claims in human activities (e.g., international trade and travel) have enabled certain species to cross published maps and institutional affil- their natural geographical barriers to invade a new region [4–6]. Understanding the genetic iations. structures of invasive species is helpful for effective management and quarantine [7–9]. The mitochondrial cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 2 (ND2) genes have been used in studies of genetic structures (e.g., Tessaratoma papillosa (Drury) and Lycorma delicatula (White)) [7,8]. Moreover, the maximum entropy method (MaxEnt), a machine learning approach, has been widely used to explore species niches by Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. analyzing species-environment relationships using presence-only data and environmental This article is an open access article variables [10]. As only presence data are required, this method has multiple applications, distributed under the terms and including determining suitable habitats for protected species [10], predicting the distribu- conditions of the Creative Commons tion of invasive species [11], studying the establishment of invasive natural enemies [12] Attribution (CC BY) license (https:// and modeling distribution shifts caused by climatic changes [13]. creativecommons.org/licenses/by/ Hobbyists aspire to obtain live lanternfly specimens because of their fascinating 4.0/). appearance and scarcity in the market; however, certain lanternfly species could become Biology 2021, 10, 678. https://doi.org/10.3390/biology10070678 https://www.mdpi.com/journal/biology Biology 2021, 10, 678 2 of 13 serious pests. For instance, the spotted lanternfly (Lycorma delicatula) is a notoriously invasive species that causes great economic losses to the grape industry [6]. The longan lanternfly Pyrops candelaria (Linnaeus) (Hemiptera: Fulgoridae) is a large species with an exaggerated cephalic process and magnificent wing pattern (Figure1), making it popular among collectors. This species is distributed in China, India, Myanmar, Thailand, Vietnam, Cambodia, Indonesia (Java) and Kinmen, an outlying island of Taiwan (Figure2)[14–17] . The major host plants of the longan lanternfly are longan (Dimocarpus longan Lour.), pomelo (Citrus maxima Merr.) and mango (Mangifera indica Linnaeus) [18]. This species was observed for the first time in Wugu and Bali in Northern Taiwan in 2018. On Kinmen Islands, the longan lanternfly is regarded as a mascot. The remarkable appearance renders the species an excellent subject for environmental education. The insect also attracts many wildlife photographers from the main island to Kinmen every year. In addition, the Kinmen Islands are the nearest native region for the longan lanternfly without tight quarantine, since it belongs to the territory of Taiwan. As a result, Kinmen Islands are a possible origin of invasion. Previous studies have reported the longan lanternfly as an agricultural pest [15,19,20], but no significant impact has been observed since its invasion. Nevertheless, the ecological effects of invasive species are unpredictable. Therefore, from the conservation perspective, management of the longan lanternfly should be taken seriously. This study aimed to trace the invasion history of the longan lanternfly, predict the potential expansion area and assess the risk to crop cultivation areas in Taiwan. First, we hypothesized that the origin of invasion is Kinmen Islands; therefore, genetic structures for the newly introduced populations of P. candelaria were reconstructed and the haplotypes among different regions were compared. Second, MaxEnt was used to predict the potential distribution of P. candelaria in Taiwan with inferences drawn for habitat suitability under certain climatic conditions, including temperature and precipitation. Finally, the potential distribution areas were matched with information on the host plant cultivation areas. Biology 2021, 10, x FOR PEER REVIEW 3 of 14 The result is a combination of climatic factors and host plant information to improve the credibility of risk assessment for invasion and potential spread. Figure 1. AdultAdult individuals individuals of of the the longan longan lanternfly, lanternfly, Pyrops candelaria (Linnaeus) on its main host plant, Dimocarpus longan . Figure 2. Global occurrence of Pyrops candelaria. The triangles represent distribution records. Biology 2021, 10, x FOR PEER REVIEW 3 of 14 Biology 2021, 10, 678 3 of 13 Figure 1. Adult individuals of the longan lanternfly, Pyrops candelaria (Linnaeus) on its main host plant, Dimocarpus longan. Figure 2. Global occurrence of Pyrops candelaria. The triangles represent distribution records. 2. Materials and Methods 2.1. Genetic Structure and Phylogenetic Reconstruction of P. candelaria in Taiwan and Related Regions 2.1.1. Sample Preparation, PCR Amplification and Sequencing A total of 155 P. candelaria specimens were collected from the main island of Taiwan (n = 105) and several native regions, including China (n = 5), Thailand (n = 20), Hong Kong (n = 3), Macau (n = 1), Kinmen (n = 20) and Matsu (n = 1) (Table S1). All samples were preserved in 95% ethanol and stored at −20 ◦C. Genomic DNA was extracted from the single tarsi of P. candelaria specimens using QuickExtract™ DNA Extraction Solution 1.0 (Epicenter) according to the manufacturer’s protocol for insect tissue. Two partial sequences from the mitochondrial cytochrome oxidase subunit I (COI) and NADH dehydrogenase 2 (ND2) genes were targeted for amplification. The COI gene was amplified using the universal primers LCO1490 (50- GGTCAACAAATCATAAAGATATTGG-30) and HCO2198 (50-TAAACTTCAGGGTGACCA AAAAATCA-30)[21] and the ND2 gene was amplified using primers ND2-41F (50-ATGACA ATAAGAGTAATAAT-30) and ND2-819R (50-TGAAATTAATGATGATCTGA-30), which were designed in this study. The reaction mixture contained 2 µL of extracted DNA, 0.5 µL ® of each primer, 4 µL of 5× FIREPol Master Mix (Solis BioDyne) and 13 µL of ddH2O. The PCR included an initial denaturation at 94 ◦C for 2 min, followed by 35 cycles of 30 s denaturation at 94 ◦C, 30 s annealing at 47.5 ◦C and 40 ◦C for the COI and ND2 genes, respectively, 45 s extension at 72 ◦C and a final extension at 72 ◦C for 10 min. Automatic sequencing was performed using an ABI 3730XL DNA Analyzer (Applied Biosystems). 2.1.2. Sequence Analyses and Phylogenetic Reconstruction Sequences were edited and assembled into contiguous sequences using BioEdit 7.0.5.3 [22] and sequence alignments were performed automatically using the MAFFT 7.0 online server [23]. Haplotype network analysis was applied using TCS 1.21 [24] and modified using tcsBU [25]. Pairwise genetic distances between different populations were estimated using
Recommended publications
  • AND BODY of CICADA": IMPRESSIONS of the LANTERN-FLY (HEMIPTERA: FULGORIDAE) in the VILLAGE of Penna BRANCA" BAHIA STATE, BRAZIL
    Journal of Ethnobiology 23-46 SpringiSummer 2003 UHEAD OF SNAKE, WINGS OF BUTTERFL~ AND BODY OF CICADA": IMPRESSIONS OF THE LANTERN-FLY (HEMIPTERA: FULGORIDAE) IN THE VILLAGE OF PEnnA BRANCA" BAHIA STATE, BRAZIL ERALDO MEDEIROS COSTA-NElO" and JOSUE MARQUES PACHECO" a Departtll'rtl?nto de Cit?t1Cias BioMgicasr Unh:rersidade Estadual de Feira de Santana, Km 3, BR 116, Campus Unirl£rsitario, eEP 44031-460, Ferra de Santana, Bahia, Brazil [email protected],br b DepartmHemo de Biowgifl Evolutim e Ecologia, Unit:rersidade Federal de Rod. Washington Luis, Km 235, Caixa Postal 676, CEP 13565~905, Sao Silo Paulo, Brazil r:~mail: [email protected] To the memory of Darrell Addison Posey (1947-2001) ABSTRACT.-Four aspects of the ethnoentomology of the lantern-fly (Fulgora la­ temari" L., 1767) were studied in Pedra Branca, Brazil. A total of 45 men and 41 women were consulted through open-ended interviews and their actions were observed in order to document the wisdom, beliefs, feelings, and behaviors related to the lantern-fly. People/s perceptions of the ex.temal shape of the insect influence its ethnotaxonomy, and they may categorize it into five different ethnosemantic domains, VilJagers a.re familiar with the habitat and food habits of the lantern- fly; they it lives on the trunk of Simarouba sp. (Simaroubaceae} by feeding on sap with aid of its 'sting: The culturally constructed attil:tldes toward this insect are that it is a fearsome organism that should be extlimninated .vhenever it is found because it makes 'deadly attacks.' on plants and human beings.
    [Show full text]
  • (Hemiptera: Fulgoromorpha: Fulgoridae) from Sabah, East Malaysia
    Département du Rhône - Musée des Confluences, Lyon UNE NOUVELLE ESPÈCE DE SAIVA DISTANT, 1906 (HEMIPTERA: FULGOROMORPHA: FULGORIDAE) DU SABAH, EST MALAISIE A NEW SPECIES OF SAIVA DISTANT, 1906 (HEMIPTERA: FULGOROMORPHA: FULGORIDAE) FROM SABAH, EAST MALAYSIA Steven CHEW KEA FOO* & Thierry PORION** RÉSUMÉ ABSTRACT Une nouvelle espèce de Saiva Distant est décrite et A new Saiva Distant species of the Fulgorinae sub- illustrée, à partir de quatre spécimens collectés au family is described, discussed and illustrated based on Sabah, Est Malaisie. four specimens collected in Sabah, East Malaysia. Mots-clés : Hemiptera, Fulgoromorpha, Fulgoridae, Keywords: Hemiptera, Fulgoromorpha, Fulgoridae, Fulgorinae, Saiva, Sabah, Borneo, Est Malaisie. Fulgorinae, Saiva, Sabah, Borneo, East Malaysia. INTRODUCTION INTRODUCTION Le genre Saiva Distant comprend 14 espèces, Saiva The genus Saiva Distant is composed of 14 species, as cultellata (Walker), 1857 ayant été replacée dans le Saiva cultellata (Walker), 1857 has been placed in the genre voisin le plus proche Pyrops Spinola, 1839 par closest genus Pyrops Spinola, 1839 by Nagai & Nagai & Porion (2002) suivant la clé des deux genres Porion (2002) based on Lallemand’s (1963) key to de la sous-famille des Fulgorinae (Lallemand, 1963). both genera of the Fulgorinae subfamily. La description de la nouvelle espèce est basée sur The new species is described based on two mâles and deux spécimens mâles et deux spécimens femelles two females collected in 2005 in Crocker range, collectés en 2005 à Crocker range, Sabah, Est Sabah, East Malaysia. Malaisie. Saiva karimbujangi Chew Kea Foo & Porion, Saiva karimbujangi Steven Chew & Porion, sp. nov. sp. nov. Matériel examiné: Material examinated: Holotype mâle, East Malaysia, Sabah, Crocker range, Holotype male, East Malaysia, Sabah, Crocker range, 1000 m., 14-V-2005, Steven Chew Kea Foo leg., in 1000 m., 14-V-2005, Steven Chew Kea Foo leg., Muséum de Lyon, Rhône, France.
    [Show full text]
  • Conservation Assessment for the Kansan Spikerush Leafhopper (Dorydiella Kansana Beamer)
    Conservation Assessment For The Kansan spikerush leafhopper (Dorydiella kansana Beamer) USDA Forest Service, Eastern Region January 11, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • An Inventory of Nepal's Insects
    An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal.
    [Show full text]
  • Insecta: Hemiptera: Fulgoroidea) Julie M Urban1* and Jason R Cryan2
    Urban and Cryan BMC Evolutionary Biology 2012, 12:87 http://www.biomedcentral.com/1471-2148/12/87 RESEARCH ARTICLE Open Access Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea) Julie M Urban1* and Jason R Cryan2 Abstract Background: Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results: Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania.
    [Show full text]
  • Leaf- Hoppers and Their Natural Enemies
    DIVISION OF ENTOMOLOGY BULLETIN NO. 1 PART 9 REPORT OF WORK OF THE EXPERIMENT STATION OF THE Hawaiian Sugar Planters' Association Leaf- Hoppers and their Natural Enemies (PT. IX. LBAF^HOPPERS^HEMIPTERA) By G;'^W:''klRKALDY HONOLULU, H. T. FEBRUARY 3, 1906 HAWAIIAN SUGAR PLANTERS* ASSOCIATION TRUSTEES FOR 1906 H. P. Baldwin President' E. F. Bishop Vice-President W, O. Smith Secretary-Treasurer E. D. Tenney F. M. Swanzy W. Pfotenhauer S. M. Damon Wm. G. Irwin F. A. Schaefer, EXPERIMENT STATION COMMITTEE W. M. Giffard, Chairman E. D. Tenney E. E. Paxton EXPERIMENT STATION STAFF DIVISION OF AGRICULTURE AND CHEMISTRY C. F. Eckart Director E. G. Clarke Agriculturist S. S. Peck... Assistant Chemist Firman Thompson Assistant Chemist F. R. Werthmueller .Assistant Chemist A. E. Jordan Assistant Chemist T. Lougher Field Foreman DIVISION OF DIVISION OF entomology PATHOLOGY AND PHYSIOLOGY ' R. C. Li. Perkins. ..Director N. A. Cobb Director A. Koebele Consulting Entomologist L. Lewton-Brain.. Assistant DirectC Alex. Craw Consulting Entomologist B. M. Grosse Assistant G. W. Kirkaldy Assistant Entomologist F. W. Terry Assistant Entomologist Otto H. Swezey Assistant Entomologist F. Muir Assistant Entomologist GENERAL W. E. Chambers Illustrator C. H. McBride Cashier DIVISION OF ENTOMOLOGY BULLETIN NO. 1 PART 9 REPORT OF WORK OF THE EXPERIMENT STATION OF THE Hawaiian Sugar Planters' Association Leaf -Hoppers and their Natural Enemies (PT, IX, LBAF-HOPPERS—HEMIPTERA) By G. W. KIRKALDY HONOLULU, H. T. FEBRUARY, 1906 LETTER OF TRANSMITTAL. Honolulu, r. 11., January l/Ui, 1906. To the C'ouunittcc on Exi)crinient Station, H. S. P. A., Hono- lulu, T.
    [Show full text]
  • Predatory and Parasitic Lepidoptera: Carnivores Living on Plants
    Journal of the Lepidopterists' Society 49(4), 1995, 412-453 PREDATORY AND PARASITIC LEPIDOPTERA: CARNIVORES LIVING ON PLANTS NAOMI E. PIERCE Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138, USA ABSTRACT. Moths and butterflies whose larvae do not feed on plants represent a decided minority slice of lepidopteran diversity, yet offer insights into the ecology and evolution of feeding habits. This paper summarizes the life histories of the known pred­ atory and parasitic lepidopteran taxa, focusing in detail on current research in the butterfly family Lycaenidae, a group disproportionately rich in aphytophagous feeders and myr­ mecophilous habits. More than 99 percent of the 160,000 species of Lepidoptera eat plants (Strong et al. 1984, Common 1990). Plant feeding is generally associated with high rates of evolutionary diversification-while only 9 of the 30 extant orders of insects (Kristensen 1991) feed on plants, these orders contain more than half of the total number of insect species (Ehrlich & Raven 1964, Southwood 1973, Mitter et al. 1988, cf. Labandiera & Sepkoski 1993). Phytophagous species are characterized by specialized diets, with fewer than 10 percent having host ranges of more than three plant families (Bernays 1988, 1989), and butterflies being particularly host plant-specific (e.g., Remington & Pease 1955, Remington 1963, Ehrlich & Raven 1964). This kind of life history specialization and its effects on population structure may have contributed to the diversification of phytophages by promoting population subdivision and isolation (Futuyma & Moreno 1988, Thompson 1994). Many studies have identified selective forces giving rise to differences in niche breadth (Berenbaum 1981, Scriber 1983, Rausher 1983, Denno & McClure 1983, Strong et al.
    [Show full text]
  • The Sensory Structures of the Antennal Flagellum in Hyalesthes Obsoletus
    Arthropod Structure & Development 38 (2009) 473–483 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd The sensory structures of the antennal flagellum in Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae): A functional reduction? Roberto Romani a,*, Marco Valerio Rossi Stacconi a, Paola Riolo b, Nunzio Isidoro b a Dipartimento di Scienze Agrarie e Ambientali, Perugia University, 06121 Perugia, Italy b Dipartimento Scienze Ambientali e delle Produzioni Vegetali, Marche Polytechnic University, 60131 Ancona, Italy article info abstract Article history: Despite their relevance as harmful pests on plants of economic importance, Hemiptera Fulgoromorpha Received 3 April 2009 have been poorly studied as regards their antennal sensory structures. In particular, the flagellum has Accepted 6 August 2009 been neglected and, therefore, to date there are no data on its structural organization and sensory equipment. In order to fill this gap, we carried out a study on the sensillum types and distribution on the Keywords: flagellum of the planthopper Hyalesthes obsoletus Signoret, an efficient vector of the stolbur phytoplasma, Ultrastructure the cause of various crop diseases. In this cixiid species the antenna is composed of three segments, the Sensilla scape, an enlarged pedicel and a long flagellum. This latter is made of a single segment and presents Scolopidia Thermo-hygroreceptors a basal, bulb-like enlargement from which two processes arise, a short spur and a long arista. Combining scanning electron microscopy, transmission electron microscopy and focused ion beam investigations, CO2 receptors Phytoplasma vectors we discovered the presence of a total number of 6 sensilla, belonging to 4 different types: a single FIB scolopidium extending from the bulb to the arista, three sensilla styloconica within the cuticular spur and two different sensilla coeloconica inside the bulb.
    [Show full text]
  • Hemiptera: Fulgoromorpha: Fulgoridae) by Optimizing Field Work Surveys with Citizen Science Involvement Through Facebook Networking and Data Access in FLOW Website
    Belgian Journal of Entomology 37 : 1-16 (2016) ISSN : 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:CA852E68-BCE4-4735-BF5D-A63F5D33B5F3 Belgian Journal of Entomology Updating lanternflies biodiversity knowledge in Cambodia (Hemiptera: Fulgoromorpha: Fulgoridae) by optimizing field work surveys with citizen science involvement through Facebook networking and data access in FLOW website 1 2 3 Jérôme CONSTANT , Sophany PHAUK & ThierryBOURGOIN 1 Royal Belgian Institute of Natural Sciences, O.D. Phylogeny and Taxonomy, Entomology, Vautier street 29, B-1000 Brussels, Belgium (corresponding author: e-mail: [email protected]) urn:lsid:zoobank.org:author:6E6072A1-9415-4C8D-8E60-2504444DB290 2 Royal University of Phnom Penh, Cambodian Entomology Initiatives, Department of Biology, Faculty of Science, Cambodia (e-mail: [email protected]) 3 Museum National d'Histoire Naturelle, Sorbonne Universités, Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN-CNRS-UPMC-EPHE, CP50, 57 rue Cuvier, F-75231, Paris cedex 5, France (e-mail: [email protected]) Published : Brussels, January 20, 2016 Constant J., Phauk S. & Bourgoin T. Cambodian lanternflies and Facebook (Hemiptera: Fulgoridae) Updating lanternflies biodiversity knowledge in Cambodia (Hemiptera: Fulgoromorpha: Fulgoridae) by optimizing field work surveys with citizen science involvement through Facebook networking and data access in FLOW website Jérôme CONSTANT, Sophany PHAUK & Thierry BOURGOIN ISSN : 1374-5514 (Print Edition) ISSN : 2295-0214 (Online Edition) Le Belgian Journal of Entomolgy est édité par la Société royale belge d'Entomologie, association sans but lucratif, fondée le 9 avril 1855. Siège social : rue Vautier 29, B-1000 Bruxelles De Belgian Journal of Entomology is uitgegeven door de Koninklijke Belgische Vereniging voor Entomologie, vereniging zonder winstoogmerk, opgericht op 9 april 1855.
    [Show full text]
  • Taxonomia De Fulgoroidea No Brasil (Insecta: Hemiptera: Auchenorrhyncha), Com Ênfase Em Dictyopharidae
    MARCELO DA SILVA BAPTISTA TAXONOMIA DE FULGOROIDEA NO BRASIL (INSECTA: HEMIPTERA: AUCHENORRHYNCHA), COM ÊNFASE EM DICTYOPHARIDAE Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Entomologia, para obtenção do título de Doctor Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2006 Ficha catalográfica preparada pela Seção de Catalogação e Classificação da Biblioteca Central da UFV T Baptista, Marcelo da Silva, 1971- B222t Taxonomia de Fulgoroidea no Brasil ( Insecta: 2006 Hemiptera: Auchenorrhyncha ), com ênfase em Dictyopharidae / Marcelo da Silva Baptista. – Viçosa : UFV, 2006. x, 274f. : il. (algumas col.) ; 29cm. Texto em português e inglês. Orientador: Paulo Sérgio Fiuza Ferreira. Tese (doutorado) - Universidade Federal de Viçosa. Inclui bibliografia. 1. Fulgoroidea - Identificação. 2. Fulgoroidea - Catálogos e coleções. 3. Fulgoroidea - Distribuição geográfica. 4. Hemíptera. I. Universidade Federal de Viçosa. II.Título. CDD 22.ed. 595.754 MARCELO DA SILVA BAPTISTA TAXONOMIA DE FULGOROIDEA NO BRASIL (INSECTA: HEMIPTERA: AUCHENORRHYNCHA), COM ÊNFASE EM DICTYOPHARIDAE Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Entomologia, para obtenção do título de Doctor Scientiae. APROVADA: 16 de setembro de 2006 Prof. Elidiomar Ribeiro da Silva Prof. José Eduardo Serrão (Co-Orientador) (Co-Orientador) Prof. Lucio Antonio de Oliveira Campos Profa. Milene Faria Vieira Prof. Paulo Sérgio Fiuza Ferreira (Orientador) Aos meus pais, Aldo Baptista e Sidnéa da Silva Baptista, que sempre fizeram de tudo para que eu alcançasse e conquistasse mais essa etapa na vida. À minha filha Victoria Nolding Barros Baptista, que sonho estar sempre ao meu lado. Amo vocês. ii AGRADECIMENTOS Em primeiro lugar gostaria de agradecer a cinco pessoas, que me concederem o privilégio de desenvolver a este trabalho no Laboratório de Insetos Aquáticos na Universidade Federal do Estado do Rio de Janeiro.
    [Show full text]
  • Evolutionary Patterns of Host Plant Use by Delphacid Planthoppers
    population dynamics. Plant de­ specificity are considered with 1 crop varieties resistant to del- plant architecture on the abun­ n Chapter 3 (Denno). Species­ Evolutionary Patterns of Host Plant ' geographic and plant patch Use by Delphacid Planthoppers and density and plant diversity on l. The causal mechanisms for Their Relatives 1 and persistence are discussed its such as dispersal ability and ization and persistence. Stephen W. Wilson, Charles Mitter, Robert F. Denno and Michael R. Wilson Introduction Planthoppers (Homoptera: Fulgoroidea) are found on every continent ex­ cept Antarctica and in all major biomes, including tropical rainforests, deserts, grasslands, and the arctic tundra (O'Brien and Wilson 1985). The more than 9000 described species are divided into 19 families (O'Brien and Wilson 1985; Wheeler and Wilson 1987). All species of Fulgoroidea are phytophagous, sucking fluids from leaves, stems, roots, or fungal hyphae. There are species which feed on woody plants (both angiosperms and gymnosperms), herbs, ferns, and even fungi (O'Brien and Wilson 1985). The largest and most studied family of planthoppers is the Delphacidae which includes more than 2000 species in approximately 300 genera and 6 subfamilies (Asche 1985, 1990). Most continental delphacids are associated with monocots, particularly grasses and sedges (Wilson and O'Brien 1987; Denno and Roderick 1990 ), whereas some species, especially those on oceanic archipelagos, have radiated on dicots as well (Giffard 1922; Zim­ merman 1948). Their predilection for monocots, phloem-feeding habit, oviposition behavior and ability to transmit pathogens have contributed to the severe pest status of several delphacid species on rice, corn, sugarcane, and several cereal crops (Wilson and O'Brien 1987).
    [Show full text]
  • Review of the Clavatus Group of the Lanternfly Genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae)
    European Journal of Taxonomy 305: 1–26 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.305 www.europeanjournaloftaxonomy.eu 2017 · Constant J. & Pham H.-T. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:53662DE6-D5C0-4FBD-9EB2-2000940AFE85 Review of the clavatus group of the lanternfly genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae) Jérôme CONSTANT 1 & Hong-Thai PHAM 2 1 Royal Belgian Institute of Natural Sciences, O.D. Phylogeny and Taxonomy, Entomology, Vautier Street 29, B-1000 Brussels, Belgium. 2 Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:6E6072A1-9415-4C8D-8E60-2504444DB290 2 urn:lsid:zoobank.org:author:E34CB863-7E3B-4E8F-8738-B41C07D9F5F9 Abstract. The clavatus group of Pyrops Spinola, 1839 is reviewed and redefined. The new combination Pyrops atroalbus (Distant, 1918) comb. nov. is proposed, as atroalbus is reinstated as a full species from status of subspecies of Pyrops watanabei (Matsumura, 1913). Pyrops nigripennis (Chou & Wang, 1985) and Pyrops clavatus mizunumai (Sato & Nagai, 1994) are proposed as junior synonyms of P. clavatus (Westwood, 1839). The Philippine species P. polillensis (Baker, 1925) is removed from the group and not attributed to any of the currently defined species groups. Hence, the clavatus group is restricted to continental Southeast Asia and Taiwan and contains three species: P. atroalbus comb. nov., P. clavatus and P. watanabei. A key to the species of the group and illustrations of the male genitalia are provided.
    [Show full text]