A Course in Game Theory

Total Page:16

File Type:pdf, Size:1020Kb

A Course in Game Theory Page iii A Course in Game Theory Martin J. Osborne Ariel Rubinstein The MIT Press Cambridge, Massachusetts London, England Page iv Copyright © 1994 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic. or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was typeset by the authors, who are greatly indebted to Donald Knuth (the creator of TEX), Leslie Lamport (the creator of LATEX), and Eberhard Mattes (the creator of emTEX) for generously putting superlative software in the public domain. Camera-ready copy was produced by Type 2000, Mill Valley, California, and the book was printed and bound by The Maple-Vail Book Manufacturing Group, Binghamton, New York. Osborne, Martin J. A course in game theory I Martin J. Osborne, Ariel Rubinstein. p. cm. Includes bibliographical references and index. ISBN 0-262-15041-7.—ISBN 0-262-65040-1 (pbk.) 1. Game theory. I. Rubinstein, Ariel. II. Title. HB 144.0733 1994 658.4'0353-dc20 94-8308 CIP Fifth printing, 1998 Page v CONTENTS Preface xi 1 1 Introduction 1.1 Game Theory 1 1.2 Games and Solutions 2 1.3 Game Theory and the Theory of Competitive Equilibrium 3 1.4 Rational Behavior 4 1.5 The Steady State and Deductive Interpretations 5 1.6 Bounded Rationality 6 1.7 Terminology and Notation 6 Notes 8 I 9 Strategic Games 2 11 Nash Equilibrium 2.1 Strategic Games 11 2.2 Nash Equilibrium 14 2.3 Examples 15 2.4 Existence of a Nash Equilibrium 19 2.5 Strictly Competitive Games 21 2.6 Bayesian Games: Strategic Games with Imperfect Information 24 Notes 29 Page vi 3 31 Mixed, Correlated, and Evolutionary Equilibrium 3.1 Mixed Strategy Nash Equilibrium 31 3.2 Interpretations of Mixed Strategy Nash Equilibrium 37 3.3 Correlated Equilibrium 44 3.4 Evolutionary Equilibrium 48 Notes 51 4 53 Rationalizability and Iterated Elimination of Dominated Actions 4.1 Rationalizability 53 4.2 Iterated Elimination of Strictly Dominated Actions 58 4.3 Iterated Elimination of Weakly Dominated Actions 62 Notes 64 5 67 Knowledge and Equilibrium 5.1 A Model of Knowledge 67 5.2 Common Knowledge 73 5.3 Can People Agree to Disagree? 75 5.4 Knowledge and Solution Concepts 76 5.5 The Electronic Mail Game 81 Notes 84 II 87 Extensive Games with Perfect Information 6 89 Extensive Games with Perfect Information 6.1 Extensive Games with Perfect Information 89 6.2 Subgame Perfect Equilibrium 97 6.3 Two Extensions of the Definition of a Game 101 6.4 The Interpretation of a Strategy 103 6.5 Two Notable Finite Horizon Games 105 6.6 Iterated Elimination of Weakly Dominated Strategies 108 Notes 114 7 117 Bargaining Games 7.1 Bargaining and Game Theory 117 7.2 A Bargaining Game of Alternating Offers 118 7.3 Subgame Perfect Equilibrium 121 7.4 Variations and Extensions 127 Notes 131 Page vii 8 133 Repeated Games 8.1 The Basic Idea 133 8.2 Infinitely Repeated Games vs. Finitely Repeated Games 134 8.3 Infinitely Repeated Games: Definitions 136 8.4 Strategies as Machines 140 8.5 Trigger Strategies: Nash Folk Theorems 143 8.6 Punishing for a Limited Length of Time: A Perfect Folk Theorem for 146 the Limit of Means Criterion 8.7 Punishing the Punisher: A Perfect Folk Theorem for the Overtaking 149 Criterion 8.8 Rewarding Players Who Punish: A Perfect Folk Theorem for the 150 Discounting Criterion 8.9 The Structure of Subgame Perfect Equilibria Under the Discounting 153 Criterion 8.10 Finitely Repeated Games 155 Notes 160 9 163 Complexity Considerations in Repeated Games 9.1 Introduction 163 9.2 Complexity and the Machine Game 164 9.3 The Structure of the Equilibria of a Machine Game 168 9.4 The Case of Lexicographic Preferences 172 Notes 175 10 177 Implementation Theory 10.1 Introduction 177 10.2 The Implementation Problem 178 10.3 Implementation in Dominant Strategies 180 10.4 Nash Implementation 185 10.5 Subgame Perfect Equilibrium Implementation 191 Notes 195 Page viii III 197 Extensive Games with Imperfect Information 11 199 Extensive Games with Imperfect Information 11.1 Extensive Games with Imperfect Information 199 11.2 Principles for the Equivalence of Extensive Games 204 11.3 Framing Effects and the Equivalence of Extensive Games 209 11.4 Mixed and Behavioral Strategies 212 11.5 Nash Equilibrium 216 Notes 217 12 219 Sequential Equilibrium 12.1 Strategies and Beliefs 219 12.2 Sequential Equilibrium 222 12.3 Games with Observable Actions: Perfect Bayesian Equilibrium 231 12.4 Refinements of Sequential Equilibrium 243 12.5 Trembling Hand Perfect Equilibrium 246 Notes 254 IV 255 Coalitional Games 13 257 The Core 13.1 Coalitional Games with Transferable Payoff 257 13.2 The Core 258 13.3 Nonemptiness of the Core 262 13.4 Markets with Transferable Payoff 263 13.5 Coalitional Games without Transferable Payoff 268 13.6 Exchange Economies 269 Notes 274 14 277 Stable Sets, the Bargaining Set, and the Shapley Value 14.1 Two Approaches 277 14.2 The Stable Sets of yon Neumann and Morgenstern 278 14.3 The Bargaining Set, Kernel, and Nucleolus 281 14.4 The Shapley Value 289 Notes 297 Page ix 15 299 The Nash Solution 15.1 Bargaining Problems 299 15.2 The Nash Solution: Definition and Characterization 301 15.3 An Axiomatic Definition 305 15.4 The Nash Solution and the Bargaining Game of Alternating 310 Offers 15.5 An Exact Implementation of the Nash Solution 311 Notes 312 List of Results 313 References 321 Index 341 Page xi PREFACE This book presents some of the main ideas of game theory. It is designed to serve as a textbook for a one-semester graduate course consisting of about 28 meetings each of 90 minutes. The topics that we cover are those that we personally would include in such a one-semester course. We do not pretend to provide a complete reference book on game theory and do not necessarily regard the topics that we exclude as unimportant. Our selection inevitably reflects our own preferences and interests. (Were we to start writing the book now we would probably add two chapters, one on experimental game theory and one on learning and evolution.) We emphasize the foundations of the theory and the interpretation of f the main concepts. Our style is to give precise definitions and full proofs of results, sacrificing generality and limiting the scope of the material when necessary to most easily achieve these goals. We have made a serious effort to give credit for an the concepts, results, examples, and exercises (see the "Notes" at the end of each chapter). We regret any errors and encourage you to draw our attention to them. Structure of the Book The book consists of four parts; in each part we study a group of related models. The chart on the next page summarizes the interactions among the chapters. A basic course could consist of Chapters 2, 3, 6, 11, 12, and 13. Page xii The main interactions between the chapters. The areas of the boxes in which the names of the chapters appear are proportional to the lengths of the chapters. A solid arrow connecting two boxes indicates that one chapter depends on the other; a dotted arrow indicates that only the main ideas of one chapter are used in the other. A basic course could consist of the six chapters in heavy boxes. Page xiii Exercises Many of the exercises are challenging; we often use exercises to state subsidiary results. Instructors will probably want to assign additional straightforward problems and adjust (by giving hints) the level of our exercises to make it appropriate for their students. Solutions are available to instructors on the web site for the book (see page xv). Disagreements Between the Authors We see no reason why a jointly authored book should reflect a uniform view. At several points, as in the following note, we briefly discuss issues about which we disagree. A Note on Personal Pronouns We disagree about how to handle English third-person singular pronouns. AR argues that we should use a ''neutral" pronoun and agrees to the use of "he", with the understanding that this refers to both men and women. Continuous reminders of the he/she issue simply divert the reader's attention from the main issues. Language is extremely important in shaping our thinking, but in academic material it is not useful to wave it as a flag, as is common in some circles. MJO argues that no language is "neutral". In particular, there is a wealth of evidence, both from experiments and from analyses of language use, that "he" is not generally perceived to encompass both females and males. To quote the American Heritage Dictionary (third edition, page 831), "Thus he is not really a gender-neutral pronoun; rather it refers to a male who is to be taken as the representative member of the group referred to by its antecedent. The traditional usage, then, is not simply a grammatical convention; it also suggests a particular pattern of thought." Further, the use of "he" to refer to an individual of unspecified sex did not even arise naturally, but was imposed as a rule by (male) prescriptive grammarians in the eighteenth and nineteenth centuries who were upset by the widespread use of "they" as a singular pronoun and decided that, since in their opinion men were more important than women, "he" should be used. The use of "he" to refer to a generic individual thus both has its origins in sexist attitudes and promotes such attitudes.
Recommended publications
  • The Determinants of Efficient Behavior in Coordination Games
    The Determinants of Efficient Behavior in Coordination Games Pedro Dal B´o Guillaume R. Fr´echette Jeongbin Kim* Brown University & NBER New York University Caltech May 20, 2020 Abstract We study the determinants of efficient behavior in stag hunt games (2x2 symmetric coordination games with Pareto ranked equilibria) using both data from eight previous experiments on stag hunt games and data from a new experiment which allows for a more systematic variation of parameters. In line with the previous experimental literature, we find that subjects do not necessarily play the efficient action (stag). While the rate of stag is greater when stag is risk dominant, we find that the equilibrium selection criterion of risk dominance is neither a necessary nor sufficient condition for a majority of subjects to choose the efficient action. We do find that an increase in the size of the basin of attraction of stag results in an increase in efficient behavior. We show that the results are robust to controlling for risk preferences. JEL codes: C9, D7. Keywords: Coordination games, strategic uncertainty, equilibrium selection. *We thank all the authors who made available the data that we use from previous articles, Hui Wen Ng for her assistance running experiments and Anna Aizer for useful comments. 1 1 Introduction The study of coordination games has a long history as many situations of interest present a coordination component: for example, the choice of technologies that require a threshold number of users to be sustainable, currency attacks, bank runs, asset price bubbles, cooper- ation in repeated games, etc. In such examples, agents may face strategic uncertainty; that is, they may be uncertain about how the other agents will respond to the multiplicity of equilibria, even when they have complete information about the environment.
    [Show full text]
  • Uniqueness and Symmetry in Bargaining Theories of Justice
    Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J.
    [Show full text]
  • Use of Mixed Signaling Strategies in International Crisis Negotiations
    USE OF MIXED SIGNALING STRATEGIES IN INTERNATIONAL CRISIS NEGOTIATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Unislawa M. Wszolek, B.A., M.A. ***** The Ohio State University 2007 Dissertation Committee: Approved by Brian Pollins, Adviser Daniel Verdier Adviser Randall Schweller Graduate Program in Political Science ABSTRACT The assertion that clear signaling prevents unnecessary war drives much of the recent developments in research on international crises signaling, so much so that this work has aimed at identifying types of clear signals. But if clear signals are the only mechanism for preventing war, as the signaling literature claims, an important puzzle remains — why are signals that combine both carrot and stick components sent and why are signals that are partial or ambiguous sent. While these signals would seemingly work at cross-purposes undermining the signaler’s goals, actually, we observe them frequently in crises that not only end short of war but also that realize the signaler’s goals. Through a game theoretic model, this dissertation theorizes that because these alternatives to clear signals increase the attractiveness, and therefore the likelihood, of compliance they are a more cost-effective way to show resolve and avoid unnecessary conflict than clear signals. In addition to building a game theoretic model, an additional contribution of this thesis is to develop a method for observing mixed versus clear signaling strategies and use this method to test the linkage between signaling and crisis outcomes. Results of statistical analyses support theoretical expectations: clear signaling strategies might not always be the most effective way to secure peace, while mixed signaling strategies can be an effective deterrent.
    [Show full text]
  • Equilibrium Refinements
    Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ.
    [Show full text]
  • Economics 211: Dynamic Games by David K
    Economics 211: Dynamic Games by David K. Levine Last modified: January 6, 1999 © This document is copyrighted by the author. You may freely reproduce and distribute it electronically or in print, provided it is distributed in its entirety, including this copyright notice. Basic Concepts of Game Theory and Equilibrium Course Slides Source: \Docs\Annual\99\class\grad\basnote7.doc A Finite Game an N player game iN= 1K PS() are probability measure on S finite strategy spaces σ ∈≡Σ iiPS() i are mixed strategies ∈≡×N sSi=1 Si are the strategy profiles σ∈ΣΣ ≡×N i=1 i ∈≡× other useful notation s−−iijijS ≠S σ ∈≡×ΣΣ −−iijij ≠ usi () payoff or utility N uuss()σσ≡ ∑ ()∏ ( ) is expected iijjsS∈ j=1 utility 2 Dominant Strategies σ σ i weakly (strongly) dominates 'i if σσ≥> usiii(,−− )()( u i' i,) s i with at least one strict Nash Equilibrium players can anticipate on another’s strategies σ is a Nash equilibrium profile if for each iN∈1,K uu()σ = maxσ (σ' ,)σ− iiii'i Theorem: a Nash equilibrium exists in a finite game this is more or less why Kakutani’s fixed point theorem was invented σ σ Bi () is the set of best responses of i to −i , and is UHC convex valued This theorem fails in pure strategies: consider matching pennies 3 Some Classic Simultaneous Move Games Coordination Game RL U1,10,0 D0,01,1 three equilibria (U,R) (D,L) (.5U,.5L) too many equilibria?? Coordination Game RL U 2,2 -10,0 D 0,-10 1,1 risk dominance: indifference between U,D −−=− 21011ppp222()() == 13pp22 11,/ 11 13 if U,R opponent must play equilibrium w/ 11/13 if D,L opponent must
    [Show full text]
  • California Institute of Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main DIVISION OF THE HUM ANITIES AND SO CI AL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 IMPLEMENTATION THEORY Thomas R. Palfrey � < a: 0 1891 u. "')/,.. () SOCIAL SCIENCE WORKING PAPER 912 September 1995 Implementation Theory Thomas R. Palfrey Abstract This surveys the branch of implementation theory initiated by Maskin (1977). Results for both complete and incomplete information environments are covered. JEL classification numbers: 025, 026 Key words: Implementation Theory, Mechanism Design, Game Theory, Social Choice Implementation Theory* Thomas R. Palfrey 1 Introduction Implementation theory is an area of research in economic theory that rigorously investi­ gates the correspondence between normative goals and institutions designed to achieve {implement) those goals. More precisely, given a normative goal or welfare criterion for a particular class of allocation pro blems (or domain of environments) it formally char­ acterizes organizational mechanisms that will guarantee outcomes consistent with that goal, assuming the outcomes of any such mechanism arise from some specification of equilibrium behavior. The approaches to this problem to date lie in the general domain of game theory because, as a matter of definition in the implementation theory litera­ ture, an institution is modelled as a mechanism, which is essentially a non-cooperative game. Moreover, the specific models of equilibrium behavior
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Recent Advances in Understanding Competitive Markets
    Recent Advances in Understanding Competitive Markets Chris Shannon Department of Economics University of California, Berkeley March 4, 2002 1 Introduction The Arrow-Debreu model of competitive markets has proven to be a remark- ably rich and °exible foundation for studying an array of important economic problems, ranging from social security reform to the determinants of long-run growth. Central to the study of such questions are many of the extensions and modi¯cations of the classic Arrow-Debreu framework that have been ad- vanced over the last 40 years. These include dynamic models of exchange over time, as in overlapping generations or continuous time, and under un- certainty, as in incomplete ¯nancial markets. Many of the most interesting and important recent advances have been spurred by questions about the role of markets in allocating resources and providing opportunities for risk- sharing arising in ¯nance and macroeconomics. This article is intended to give an overview of some of these more recent developments in theoretical work involving competitive markets, and highlight some promising areas for future work. I focus on three broad topics. The ¯rst is the role of asymmetric informa- tion in competitive markets. Classic work in information economics suggests that competitive markets break down in the face of informational asymme- 0 tries. Recently these issues have been reinvestigated from the vantage point of more general models of the market structure, resulting in some surpris- ing results overturning these conclusions and clarifying the conditions under which perfectly competitive markets can incorporate informational asymme- tries. The second concentrates on the testable implications of competitive markets.
    [Show full text]
  • CONTENT2 2.Pages
    DRAFT PROPOSITIONAL CONTENT in SIGNALS (for Special Issue Studies in the History and Philosophy of Science C ) Brian Skyrms and Jeffrey A. Barrett Introduction We all think that humans are animals, that human language is a sophisticated form of animal signaling, and that it arises spontaneously due to natural processes. From a naturalistic perspective, what is fundamental is what is common to signaling throughout the biological world -- the transfer of information. As Fred Dretske put it in 1981, "In the beginning was information, the word came later." There is a practice of signaling with information transfer that settles into some sort of a pattern, and eventually what we call meaning or propositional content crystallizes out. The place to start is to study the evolution, biological or cultural, of information transfer in its most simple and tractable forms. But once this is done, naturalists need first to move to evolution of more complex forms of information transfer. And then to an account of the crystallization process that gives us meaning. There often two kinds of information in the same signal: (1) information about the state of the world that the signaler observes (2) information about the act that the receiver will perform on receiving the signal. [See Millikan (1984), Harms (2004), Skyrms (2010)]. The meaning that crystalizes out about the states, we will single out here as propositional meaning. The simplest account that comes to mind will not quite do, as a general account of this kind of meaning, although it may be close to the mark in especially favorable situations.
    [Show full text]
  • Implementation Theory*
    Chapter 5 IMPLEMENTATION THEORY* ERIC MASKIN Institute for Advanced Study, Princeton, NJ, USA TOMAS SJOSTROM Department of Economics, Pennsylvania State University, University Park, PA, USA Contents Abstract 238 Keywords 238 1. Introduction 239 2. Definitions 245 3. Nash implementation 247 3.1. Definitions 248 3.2. Monotonicity and no veto power 248 3.3. Necessary and sufficient conditions 250 3.4. Weak implementation 254 3.5. Strategy-proofness and rich domains of preferences 254 3.6. Unrestricted domain of strict preferences 256 3.7. Economic environments 257 3.8. Two agent implementation 259 4. Implementation with complete information: further topics 260 4.1. Refinements of Nash equilibrium 260 4.2. Virtual implementation 264 4.3. Mixed strategies 265 4.4. Extensive form mechanisms 267 4.5. Renegotiation 269 4.6. The planner as a player 275 5. Bayesian implementation 276 5.1. Definitions 276 5.2. Closure 277 5.3. Incentive compatibility 278 5.4. Bayesian monotonicity 279 * We are grateful to Sandeep Baliga, Luis Corch6n, Matt Jackson, Byungchae Rhee, Ariel Rubinstein, Ilya Segal, Hannu Vartiainen, Masahiro Watabe, and two referees, for helpful comments. Handbook of Social Choice and Welfare, Volume 1, Edited by K.J Arrow, A.K. Sen and K. Suzumura ( 2002 Elsevier Science B. V All rights reserved 238 E. Maskin and T: Sj'str6m 5.5. Non-parametric, robust and fault tolerant implementation 281 6. Concluding remarks 281 References 282 Abstract The implementation problem is the problem of designing a mechanism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality embodied in a social choice rule.
    [Show full text]
  • Information Games and Robust Trading Mechanisms
    Information Games and Robust Trading Mechanisms Gabriel Carroll, Stanford University [email protected] October 3, 2017 Abstract Agents about to engage in economic transactions may take costly actions to influence their own or others’ information: costly signaling, information acquisition, hard evidence disclosure, and so forth. We study the problem of optimally designing a mechanism to be robust to all such activities, here termed information games. The designer cares about welfare, and explicitly takes the costs incurred in information games into account. We adopt a simple bilateral trade model as a case study. Any trading mechanism is evaluated by the expected welfare, net of information game costs, that it guarantees in the worst case across all possible games. Dominant- strategy mechanisms are natural candidates for the optimum, since there is never any incentive to manipulate information. We find that for some parameter values, a dominant-strategy mechanism is indeed optimal; for others, the optimum is a non- dominant-strategy mechanism, in which one party chooses which of two trading prices to offer. Thanks to (in random order) Parag Pathak, Daron Acemoglu, Rohit Lamba, Laura Doval, Mohammad Akbarpour, Alex Wolitzky, Fuhito Kojima, Philipp Strack, Iv´an Werning, Takuro Yamashita, Juuso Toikka, and Glenn Ellison, as well as seminar participants at Michigan, Yale, Northwestern, CUHK, and NUS, for helpful comments and discussions. Dan Walton provided valuable research assistance. 1 Introduction A large portion of theoretical work in mechanism design, especially in the world of market design applications, has focused on dominant-strategy (or strategyproof ) mechanisms — 1 those in which each agent is asked for her preferences, and it is always in her best interest to report them truthfully, no matter what other agents are doing.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]