Using Risk Dominance Strategy in Poker
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Determinants of Efficient Behavior in Coordination Games
The Determinants of Efficient Behavior in Coordination Games Pedro Dal B´o Guillaume R. Fr´echette Jeongbin Kim* Brown University & NBER New York University Caltech May 20, 2020 Abstract We study the determinants of efficient behavior in stag hunt games (2x2 symmetric coordination games with Pareto ranked equilibria) using both data from eight previous experiments on stag hunt games and data from a new experiment which allows for a more systematic variation of parameters. In line with the previous experimental literature, we find that subjects do not necessarily play the efficient action (stag). While the rate of stag is greater when stag is risk dominant, we find that the equilibrium selection criterion of risk dominance is neither a necessary nor sufficient condition for a majority of subjects to choose the efficient action. We do find that an increase in the size of the basin of attraction of stag results in an increase in efficient behavior. We show that the results are robust to controlling for risk preferences. JEL codes: C9, D7. Keywords: Coordination games, strategic uncertainty, equilibrium selection. *We thank all the authors who made available the data that we use from previous articles, Hui Wen Ng for her assistance running experiments and Anna Aizer for useful comments. 1 1 Introduction The study of coordination games has a long history as many situations of interest present a coordination component: for example, the choice of technologies that require a threshold number of users to be sustainable, currency attacks, bank runs, asset price bubbles, cooper- ation in repeated games, etc. In such examples, agents may face strategic uncertainty; that is, they may be uncertain about how the other agents will respond to the multiplicity of equilibria, even when they have complete information about the environment. -
Economics 211: Dynamic Games by David K
Economics 211: Dynamic Games by David K. Levine Last modified: January 6, 1999 © This document is copyrighted by the author. You may freely reproduce and distribute it electronically or in print, provided it is distributed in its entirety, including this copyright notice. Basic Concepts of Game Theory and Equilibrium Course Slides Source: \Docs\Annual\99\class\grad\basnote7.doc A Finite Game an N player game iN= 1K PS() are probability measure on S finite strategy spaces σ ∈≡Σ iiPS() i are mixed strategies ∈≡×N sSi=1 Si are the strategy profiles σ∈ΣΣ ≡×N i=1 i ∈≡× other useful notation s−−iijijS ≠S σ ∈≡×ΣΣ −−iijij ≠ usi () payoff or utility N uuss()σσ≡ ∑ ()∏ ( ) is expected iijjsS∈ j=1 utility 2 Dominant Strategies σ σ i weakly (strongly) dominates 'i if σσ≥> usiii(,−− )()( u i' i,) s i with at least one strict Nash Equilibrium players can anticipate on another’s strategies σ is a Nash equilibrium profile if for each iN∈1,K uu()σ = maxσ (σ' ,)σ− iiii'i Theorem: a Nash equilibrium exists in a finite game this is more or less why Kakutani’s fixed point theorem was invented σ σ Bi () is the set of best responses of i to −i , and is UHC convex valued This theorem fails in pure strategies: consider matching pennies 3 Some Classic Simultaneous Move Games Coordination Game RL U1,10,0 D0,01,1 three equilibria (U,R) (D,L) (.5U,.5L) too many equilibria?? Coordination Game RL U 2,2 -10,0 D 0,-10 1,1 risk dominance: indifference between U,D −−=− 21011ppp222()() == 13pp22 11,/ 11 13 if U,R opponent must play equilibrium w/ 11/13 if D,L opponent must -
Early Round Bluffing in Poker Author(S): California Jack Cassidy Source: the American Mathematical Monthly, Vol
Early Round Bluffing in Poker Author(s): California Jack Cassidy Source: The American Mathematical Monthly, Vol. 122, No. 8 (October 2015), pp. 726-744 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.726 Accessed: 23-12-2015 19:20 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded from 128.32.135.128 on Wed, 23 Dec 2015 19:20:53 UTC All use subject to JSTOR Terms and Conditions Early Round Bluffing in Poker California Jack Cassidy Abstract. Using a simplified form of the Von Neumann and Morgenstern poker calculations, the author explores the effect of hand volatility on bluffing strategy, and shows that one should never bluff in the first round of Texas Hold’Em. 1. INTRODUCTION. The phrase “the mathematics of bluffing” often brings a puzzled response from nonmathematicians. “Isn’t that an oxymoron? Bluffing is psy- chological,” they might say, or, “Bluffing doesn’t work in online poker. -
Jan23-Lecture.Pdf
Introduction to the Theory & Practice of Poker Lecture #8 January 23, 2020 Last night’s tourney • 178 players entered • Lasted 3.5 hours • I did not win a single hand (had one chop) • Final table, please stand up! • Winner: Shehrya Haris • Special note: Qualified in both satellites • Freda Zhou, Sam Lebowitz, Claudia Moncaliano Meta game • Should you ever show your hand? • Simple answer is no • You might be providing more information than you think • If you show a strong hand when someone folds • You eliminate some uncertainty they had about whether you were bluffing • They may more correctly label you as TAG • If you show that you folded a strong hand • Because you are trying to prove how good a player you are • First, you shouldn’t let them know if you are a good player • Second, now you will get bullied by the good players • You don’t want anyone to know that you can make good lay downs • you want them to be afraid to bluff you because they think you’re such a moron that you might always call them. • Advanced move: • The “accidental show your cards on purpose” • Some pros make a living with meta-play • Table talk • Selectively showing to advance a particular image There are 2 rules for success in poker 1. Never reveal everything you know Physical tells • I’m not a huge fan of using tells • Too many books • Too many players fake them • Tells are specific to individuals • Bet sizing tells • Bet strong when weak, and vice versa • Some commonly known tells • Stare hard at someone when weak • Hand shakes when strong • Be sure hand doesn’t -
Evolutionary Game Theory: Why Equilibrium and Which Equilibrium
Evolutionary Game Theory: Why Equilibrium and Which Equilibrium Hamid Sabourianand Wei-Torng Juangy November 5, 2007 1 Introduction Two questions central to the foundations of game theory are (Samuelson 2002): (i) Why equilibrium? Should we expect Nash equilibrium play (players choosing best response strategies to the choices of others)? (ii) If so, which equilibrium? Which of the many Nash equilibria that arise in most games should we expect? To address the …rst question the classical game theory approach employs assumptions that agents are rational and they all have common knowledge of such rationality and beliefs. For a variety of reasons there has been wide dissatisfaction with such an approach. One major concern has to do with the plausibility and necessity of rationality and the common knowledge of rationality and beliefs. Are players fully rational, having unbounded com- puting ability and never making mistakes? Clearly, they are not. Moreover, the assumption of common (knowledge of) beliefs begs another question as to how players come to have common (knowledge of) beliefs. As we shall see in later discussion, under a very broad range of situations, a system may reach or converge to an equilibrium even when players are not fully rational (boundedly rational) and are not well-informed. As a result, it may be, as School of Economics, Mathematics and Statistics, Birkbeck College Univerity of Lon- don and Faculty of Economics, University of Cambridge yInstitute of Economics, Academia Sinica, Taipei 115, Taiwan 1 Samuelson (1997) points out, that an equilibrium appears not because agents are rational, “but rather agents appear rational because an equilibrium has been reached.” The classical approach has also not been able to provide a satisfactory so- lution to the second question on selection among multiple equilibria that com- monly arise. -
Introduction to the Theory & Practice of Poker
Introduction to the Theory & Practice of Poker Lecture #4 January 16, 2020 Some logistics • Reminder to register for Saturday, 8pm poker tournament • We are showing Rounders at 7:30 pm in this room • Second showing of All In the Poker Movie on Monday, 1/20, 1:30 pm • Feedback for last night’s poker play • Less open limping • But some of you still doing it • Raise sizes still seem a bit unusual • Unless you have a specific reason stick to 3 times the previous bet • Opening ranges a bit wide • Typically you shouldn’t play more than one or two hands per round, if that • If you do, you’re playing too loose • This might be fun with play money, but when you play for real money, tighten up • Lots of use of the word “dominated” in the banter in the chat Poker Riddle: Looking back on the hand afterwards, you had the absolute nuts on the flop and the absolute nuts on the turn. On the river, you could not win or even chop. To answer correctly: Describe your hand, the flop, the turn, and the river and prove that you solved the riddle. The conditions must be true for every possible set of opponents. Amber Hamelin How to describe a hand Describing a hand • Stack sizes • Effective stacks • Table image: yours and theirs • Recent activity: aggressive, passive • Position • Cards • Thought process • Opponents thought process, if any • Action Example: how not to do it I had a pair of aces. I bet big and got one caller. Flop came low cards. -
Prisoners' Other Dilemma
DISCUSSION PAPER SERIES No. 3856 PRISONERS’ OTHER DILEMMA Matthias Blonski and Giancarlo Spagnolo INDUSTRIAL ORGANIZATION ABCD www.cepr.org Available online at: www.cepr.org/pubs/dps/DP3856.asp www.ssrn.com/xxx/xxx/xxx ISSN 0265-8003 PRISONERS’ OTHER DILEMMA Matthias Blonski, Universität Mannheim Giancarlo Spagnolo, Universität Mannheim and CEPR Discussion Paper No. 3856 April 2003 Centre for Economic Policy Research 90–98 Goswell Rd, London EC1V 7RR, UK Tel: (44 20) 7878 2900, Fax: (44 20) 7878 2999 Email: [email protected], Website: www.cepr.org This Discussion Paper is issued under the auspices of the Centre’s research programme in INDUSTRIAL ORGANIZATION. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions. The Centre for Economic Policy Research was established in 1983 as a private educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions. Institutional (core) finance for the Centre has been provided through major grants from the Economic and Social Research Council, under which an ESRC Resource Centre operates within CEPR; the Esmée Fairbairn Charitable Trust; and the Bank of England. These organizations do not give prior review to the Centre’s publications, nor do they necessarily endorse the views expressed therein. These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. -
Online Poker Statistics Guide a Comprehensive Guide for Online Poker Players
Online Poker Statistics Guide A comprehensive guide for online poker players This guide was created by a winning poker player on behalf of Poker Copilot. Poker Copilot is a tool that automatically records your opponents' poker statistics, and shows them onscreen in a HUD (head-up display) while you play. Version 2. Updated April, 2017 Table of Contents Online Poker Statistics Guide 5 Chapter 1: VPIP and PFR 5 Chapter 2: Unopened Preflop Raise (UOPFR) 5 Chapter 3: Blind Stealing 5 Chapter 4: 3-betting and 4-betting 6 Chapter 5: Donk Bets 6 Chapter 6: Continuation Bets (cbets) 6 Chapter 7: Check-Raising 7 Chapter 8: Squeeze Bet 7 Chapter 9: Big Blinds Remaining 7 Chapter 10: Float Bets 7 Chapter 1: VPIP and PFR 8 What are VPIP and PFR and how do they affect your game? 8 VPIP: Voluntarily Put In Pot 8 PFR: Preflop Raise 8 The relationship between VPIP and PFR 8 Identifying player types using VPIP/PFR 9 VPIP and PFR for Six-Max vs. Full Ring 10 Chapter 2: Unopened Preflop Raise (UOPFR) 12 What is the Unopened Preflop Raise poker statistic? 12 What is a hand range? 12 What is a good UOPFR for beginners from each position? 12 How to use Equilab hand charts 13 What about the small and big blinds? 16 When can you widen your UOPFR range? 16 Flat calling using UOPFR 16 Flat calling with implied odds 18 Active players to your left reduce your implied odds 19 Chapter 3: Blind Stealing 20 What is a blind steal? 20 Why is the blind-stealing poker statistic important? 20 Choosing a bet size for a blind steal 20 How to respond to a blind steal -
Check/Raise Flush Draws in the Middle
P G RULES FOR 20PLAYING FLUSH DRAWS IN 2018 You are about to read some of the secrets Ryan Fee and I (Doug Polk) have used to separate us from your average poker player. RYAN FEE DOUG POLK We, like many players, used to aimlessly bet the flop every time we had a flush draw without much of a plan for the turn and river and with little consideration for the impact it had on the rest of our range. (Sound familiar…?) After spending years refining and optimizing our games we have deduced a methodology to playing flush draws that is balanced, sneaky, and let’s us fight for pots where other players aren’t even looking. By following these rules you will make more money in two ways: 1 More often, you will make better hands fold when bluffing, worse hands call when value betting, and put in the minimum when we are behind. 2 Most players are still behind the curve and play most of, if not all of their flush draws the same on the flop. You will make chips by having bluffs and value bets in spots your opponents do not expectP and are not prepared for. G 20 RULES FOR PLAYING FLUSH DRAWS 1 RULE #1 Ask yourself “If my hand wasn’t a flush draw, how would I play it?” Chances are you should play the flush draw the same way. Example: j t 2 If you T 9 on would normally X check t 9 you should also check XX RULE #2 Check the nut flush draw most of the time, except in instances where it is a very strong hand and you are borderline value-betting. -
Evolutionary Game Theory: a Renaissance
games Review Evolutionary Game Theory: A Renaissance Jonathan Newton ID Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan; [email protected] Received: 23 April 2018; Accepted: 15 May 2018; Published: 24 May 2018 Abstract: Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences. Keywords: evolution; game theory; dynamics; agency; assortativity; culture; distributed systems JEL Classification: C73 Table of contents 1 Introduction p. 2 Shadow of Nash Equilibrium Renaissance Structure of the Survey · · 2 Agency—Who Makes Decisions? p. 3 Methodology Implications Evolution of Collective Agency Links between Individual & · · · Collective Agency 3 Assortativity—With Whom Does Interaction Occur? p. 10 Assortativity & Preferences Evolution of Assortativity Generalized Matching Conditional · · · Dissociation Network Formation · 4 Evolution of Behavior p. 17 Traits Conventions—Culture in Society Culture in Individuals Culture in Individuals · · · & Society 5 Economic Applications p. 29 Macroeconomics, Market Selection & Finance Industrial Organization · 6 The Evolutionary Nash Program p. 30 Recontracting & Nash Demand Games TU Matching NTU Matching Bargaining Solutions & · · · Coordination Games 7 Behavioral Dynamics p. 36 Reinforcement Learning Imitation Best Experienced Payoff Dynamics Best & Better Response · · · Continuous Strategy Sets Completely Uncoupled · · 8 General Methodology p. 44 Perturbed Dynamics Further Stability Results Further Convergence Results Distributed · · · control Software and Simulations · 9 Empirics p. -
The Scrabble Player's Handbook Is Available for Free Download At
The Scrabble Player's Handbook is available for free download at www.scrabbleplayershandbook.com 1 Contents Introduction 3 Meet The Team 5 What's Different About Competitive Scrabble? 10 How To Play Good Scrabble 11 The Words 14 What Is Scrabble? 16 Scoring Well 21 Understanding Rack Leaves 32 Word Learning 35 The First Move 46 Tile Tracking 50 Time Management 54 Exchanging 58 Phoneys 64 Set-Ups 65 Open and Closed Boards 68 The Endgame 75 Playing Style 85 How To Play Amazing Scrabble 94 The Luck Element 98 The Game Behind The Game 99 Starting Out in Competitive Play 101 Quackle 103 Zyzzyva 109 Internet Scrabble Club 115 Aerolith 117 Scrabble by Phone 119 Books 121 Scrabble Variants 123 Scrabble Around The World 125 Playing Equipment 127 Glossary 128 Appendix 133 Rules Governing Word Inclusion 133 Two-letter words 137 Three-letter words 140 SCRABBLE® is a registered trademark. All intellectual property rights in and to the game are owned in the U.S.A. by Hasbro Inc., in Canada by Hasbro Canada Inc. and throughout the rest of the world by J.W. Spear & Sons Ltd. of Maidenhead SL6 4UB, England, a subsidiary of Mattel Inc. Mattel and Spear are not affiliated with Hasbro or Hasbro Canada. The Scrabble Player's Handbook is available free of charge. There is no copyright on the contents and readers are encouraged to distribute the book in PDF or printed form to all who would benefit from it. Please respect our work by retaining the footer on every page and by refraining from reproducing any part of this book for financial gain. -
When to Hold 'Em (An Introduction To
Mathematical Assoc. of America Mathematics Magazine 0:0 Accepted 5/12/2020 when-to-hold-em-arxiv-v1.tex page 1 VOL. 0, NO. 0, 0 1 When to hold ’em Kaity Parsons, Peter Tingley* and Emma Zajdela Dept. of Mathematics and Statistics, Loyola University Chicago [email protected] Summary We consider the age-old question: how do I win my fortune at poker? First a disclaimer: this is a poor career choice. But thinking about it involves some great math! Of course you need to know how good your hand is, which leads to some super-fun counting and probability, but you are still left with questions: Should I hold ’em? Should I fold ’em? Should I bet all my money? It can be pretty hard to decide! Here we get some insight into these questions by thinking about simplified games. Along the way we introduce some ideas from game theory, including the idea of Nash equilibrium. Introduction So you want to win at poker? Certainly you need to know how good any hand is, but that isn’t the whole story: You still need to know what to do. That is, in the words of Don Schlitz [15] (made famous by Kenny Rogers [14]), you gotta know when to hold ’em, know when to fold ’em, know when to walk away, know when to run. Well, you’re on your own for when to walk away and when to run. That leaves when to hold ’em, when to fold ’em, and a crucial question that was left out: when to bet.