Steric and Electronic Influences in Organolithium Metalations John West Morton Jr

Total Page:16

File Type:pdf, Size:1020Kb

Steric and Electronic Influences in Organolithium Metalations John West Morton Jr Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1952 Steric and electronic influences in organolithium metalations John West Morton Jr. Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Morton, John West Jr., "Steric and electronic influences in organolithium metalations " (1952). Retrospective Theses and Dissertations. 13736. https://lib.dr.iastate.edu/rtd/13736 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI STEBIC AND ELECTRONIC INFLUENCES IN ORGANOLITHimi MliiTALATIONS by John West Morton, jr. A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of'Graduate College Iowa State College 1952 UMI Number: DP12870 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP12870 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii ACKNOWLEDGMENT The author wishes to express his appreciation to Dr. Henry Gilman for the advice and helpful criticism given during the course of this Investigation. ili TABLE OF CONTENTS ACKNOWLEDGRfENT ii INTRODUCTION 1 HISTORICAL 6 Simple Metalations 6 Metalations with organo lithium compoiinds . 6 Metalations with organosodium and organopotassium compounds 37 Metalations with other organometallic compounds 59 Reductive Metalations 66 Metalations Accompanied by Dehydrogenation ... 67 Metalation and the Wurtz-Fittig Reaction .... 70 Metalation-Elimination Reactions of Vinyl Hal ides and Ethers 76 The Stevens and Sommelet Rearrangements 82 EXPERIMENTAL 96 Organometallic Compounds . 96 General remarks concerning preparation and use 9^ 2,4,6-Triphenylphenyllithium 97 Preparation from 2,4,6-triphenyl- bromobenzene and lithium 97 Preparation from 2,4,6-triphenylbromo- benzene and n-butyllithium 99 Mesityllithium 100 Preparation in ether-benzene 100 Preparation in ether 100 Phenylcalcium iodide 101 Preparation 101 Analysis 102 Metalations with Sterically Hindered Organo­ metallic Compounds 104 iv Metalation of thiophene with 2,4,6-triphenylphenyllithium 104 Metalation of £-bromoanisole with 2,4,6-triphenylphenyllithiuin 104 Eesorcinol dimethyl ether 106 Metalation with mesityllithium .... 106 Metalation with 2,4,6-triphenyl- phenyllithium . 106 Metalation of dibenzofuran with 2,4,6-triphenylphenyllithiiim 107 Reaction of 6-phenylphenanthridine with 2,4,6-triphenylphenyllithium 108 Fluorene 109 General procedure 109 Metalation with phenyllithiiun .... 110 Metalation with ^-tolyllithium .... 110 Metalation with mesityllithium .... 110 Metalation with 2,4,6-triphenyl- phenyllithium ........... Ill Triphenylmethane Ill General procedure . Ill Metalation with phenyllithium .... Ill Metalation with o-tolyllithium .... Ill Metalation with mesityllithium (attempted) 112 Metalation with 2,4,6-triphenyl- phenyllithium (attempted) 113 Ring Closure Reactions of Ethers . 114 Trityl methyl ether 114 Reaction with phenyllithium followed by hydrolysis 114 Reaction with phenyllithium followed by carbonation 115 Reaction with n-butyllithium followed by hydrolysis Il6 Reaction with n-butyllithium followed by carbonation ...... Il8 Reaction with benzylmagnesium chloride 119 Reaction with t-butylmagnesium chloride 120 V Reaction with phenylcalcium iodide (attempted) 121 Reaction of trityl phenyl ether with n-butyllithium 123 9-Phenyl-9-fluorenyl methyl ether 124 Reaction with phenyllithiuia 124 Reaction with n-butyllithium 125 Reaction of benzopinacol diphenyl ether with phenyllithium , 126 Miscellaneous Metalations . 12? Metalation of benzothlazole with n-butyl- magnesium bromide " 127 At -60° 127 At 0° 127 At 20-25° 128 Metalation of triphenylamine with phenyl- calcium iodide (attempted) 129 Dibenzothiophene-5-dioxide 13I Metalation with phenylcalcium iodide (attempted) I3I Metalation with n-butylraagnesium bromide (attempted) 132 Metalation of fluorene with lithium aluminum hydride (attempted) 134 In ether 134 In ether-benzene 135 Metalation of 9-phenylfluorene with n-butyllithium 135 Fercuration of 2-methoxynaphthalene .... I36 With mercuric nitrate at room temperature I36 With mercuric nitrate at 100° (attempted) 137 Broffiination of 2-methoxy-l-naphthyl- mercuric nitrate 137 vi lodination of 2-raethoxy-l-naphthyl- mercuric nitrate I38 Mercuration of 2-methoxynaphthalene by mercuric blsulfate (attempted) 139 Mercuration of dibenzothiophene (attempted) 140 With mercuric nitrate at room temperature ..... 140 With mercuric nitrate at 100° .... 140 With mercuric bisulfate 141 Metalation of thiophene with Indium chloride (attempted) 141 Miscellaneous Preparations and Reactions .... 142 Carbonation of 2,4,6-triphenylphenyl- lithium 142 Using Dry Ice 142 Using gaseous carbon dioxide 143 Preparation of l,3#5-'triphenylben2ene . 143 Preparation of 2,4,b-triphenyl- bromobenzene 144 Preparation of resorcinol dimethyl ether . 14^ Preparation of dibenzothiophene-5-dioxide . 146 Preparation of 9-phenyl-9-fluorenol .... 146 Preparation of 9-chloro-9-phenylfluorene . 148 Preparation of 1,1,1,2-tetraphenylethane . 148 Preparation of l,l,l-triphenyl-2,2,2-tri- methylethane 149 Preparation of trityl methyl ether .... 150 Using 100 per cent sulfuric acid . 1^0 Using 96 per cent sulfuric acid ... 151 Preparation of 9-phenyl-9-^luorenyl methyl ether 151 From 9-phenyl-9-chlorofluorene .... 1^1 From 9-phenyl-9-fluorenol 1^2 Preparation of trityl phenyl ether .... 153 Preparation of benzopinacol diphenyl ether. 154 Preparation of methyl o-iodobenzoate . 154 Preparation of 2-iodophenyldiphenyl- carbinol (attempted) ..... 155 vli DISCUSSION 157 Metalations with Sterically Hindered Organolithium Compounds 157 Ring Closure Reactions of Ethers 162 Miscellaneous Metalations 177 SUMMRY 185 1 INTRODUCTION The earliest use of a highly reactive organometallic compound as a metalating agent vras reported nearly half a century ago.^ At that time, the preparation of organoalkali compounds was both inconvenient and hazardousj the procedure usually employed was a reaction between the alkali metal and an R2Hg compound. For this reason, the extensive investi­ gation of the sjnnthetic possibilities of the organoalkali reagents, in metalations as well as in other reactions, was delayed until more convenient methods of preparation^* 3»4- became available. During the past two decades, enough data have accumu­ lated concerning the organoalkali metalations to enable many general conclusions to be drawn concerning orientation^'®'7 ^P. Schorigin, Be^., 41, 2723 (1908). %, Ziegler and H. Colonius, Ann.. 479. 135 (1930)• Oilman, E, A. Zoellner and W, M, Selby, J. Chem. So£., 51, 1957 (1932). ^A. A, Morton and I. Hechenbleikner, ibid.. '>8. I697 (1936). Oilman, H. B. ?/illis, T. H. Cook, F. J. Webb and R. N. Meals, ibid.. 667 (19^0). ^H. Oilman and 0. E. Brown, ibid.. 3208 (1940). ^W. Langham, R. Q. Brewster and H. Oilman, ibid.. 6"^. 545 (I94I). 2 and the relative directing influences of various groups in such reactions. Theories dealing with the general electronic character of raetalation reactions have also been pre­ sented,®' In only a few cases, however, have stereo­ chemical considerations been adduced to explain the outcome of such reactions,^^'although steric influences in other reactions of organometallic compounds have been studied A second aspect of raetalation which has received only scant attention is that of electronic influences in the metalated product in bringing about further reaction after metalation has taken place. The only systematic studies so far reported in this field have been the brilliant investi­ gations of Wittig and co-workers on the metalation-rearrange- ments of certain ethers and quaternary ammonium salts. 14 The studies described in the Experimental part of this dissertation were undertaken with a view toward exploring D, Roberts and D. Y. Curtin, ibid,. 68. l6^8 (194S). 9a. a. Morton, ibid.. 969 (1947). V, Sunthankar and H. Oilman, J. Ore. Chem.. I6, 8 (1951). M. Spatz, Iowa State Coll. J. 8ci., IZ, 129 (194-2), 1%. Gilman and (1952), 13r. c. Fuson, G. P. Speranza and R. Gaertner, ibid.. l*?. 1155 (19^0). ^^See the Section entitled "The Stevens and Sommelet Rearrangements" in the Historical part of this dissertation. 3 both of these
Recommended publications
  • Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • The Reaction of Arenetricarbonylchromium Complexes with Alkyllithium Could Proceed Via a Variety of Pathways to Yield Any of Several Possible Products
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1975 The er action of arenetricarbonylchromium complexes with alkyllithium compounds Roger John Card Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Card, Roger John, "The er action of arenetricarbonylchromium complexes with alkyllithium compounds " (1975). Retrospective Theses and Dissertations. 5410. https://lib.dr.iastate.edu/rtd/5410 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advance technological means to photograim and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparency lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adiacent pages. This may have necessitated cutting tiiru an image and duplicating adjscsnt pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round biack mark, it is an indication Aat the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • CO2 Derivatives of Molecular Tin Compounds. Part 1: † Hemicarbonato and Carbonato Complexes
    inorganics Review CO2 Derivatives of Molecular Tin Compounds. Part 1: y Hemicarbonato and Carbonato Complexes Laurent Plasseraud Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR-CNRS 6302, Université de Bourgogne Franche-Comté, 9 avenue A. Savary, F-21078 Dijon, France; [email protected] Paper dedicated to Professor Georg Süss-Fink on the occasion of his 70th birthday. y Received: 31 March 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: This review focuses on organotin compounds bearing hemicarbonate and carbonate ligands, and whose molecular structures have been previously resolved by single-crystal X-ray diffraction analysis. Most of them were isolated within the framework of studies devoted to the reactivity of tin precursors with carbon dioxide at atmospheric or elevated pressure. Alternatively, and essentially for the preparation of some carbonato derivatives, inorganic carbonate salts such as K2CO3, Cs2CO3, Na2CO3 and NaHCO3 were also used as coreagents. In terms of the number of X-ray structures, carbonate compounds are the most widely represented (to date, there are 23 depositions in the Cambridge Structural Database), while hemicarbonate derivatives are rarer; only three have so far been characterized in the solid-state, and exclusively for diorganotin complexes. For each compound, the synthesis conditions are first specified. Structural aspects involving, in particular, the modes of coordination of the hemicarbonato and carbonato moieties and the coordination geometry around tin are then described and illustrated (for most cases) by showing molecular representations. Moreover, when they were available in the original reports, some characteristic spectroscopic data are also given for comparison (in table form).
    [Show full text]
  • Ionic Compound Ratios Time: 1 -2 Class Periods
    Collisions Lesson Plan Ionic Compound Ratios Time: 1 -2 class periods Lesson Description In this lesson, students will use Collisions to explore the formation of ionic compounds and compound ratios. Key Essential Questions 1. What makes up an ionic compound? 2. Are ionic compounds found in common ratios? Learning Outcomes Students will be able to determine the ionic compound ratio of an ionic compound. Prior Student Knowledge Expected Cations are postiviely charged ions and anions are negatively charged ions. Lesson Materials • Individual student access to Collisions on tablet, Chromebook, or computer. • Projector / display of teacher screen • Accompanying student resources (attached) Standards Alignment NGSS Alignment Science & Enginnering Practices Disciplinary Core Ideas Crosscutting Concepts • Developing and using • HS-PS-12. Construct and • Structure and Function models revise an explanation for the • Construcing explanations outcome of a simple chemical and designing solutions rection based on the outermost electron states of atoms, trends int he periodic table, and knowl- edge of the partterns of chemi- cal properties. www.playmadagames.com ©2018 PlayMada Games LLC. All rights reserved. 1 PART 1: Explore (15 minutes) Summary This is an inquiry-driven activity where students will complete the first few levels of the Collisions Ionic Bonding game to become introduced to the concept of ionic bonding and compound ratios. Activity 1. Direct students to log into Collisions with their individual username and password. 2. Students should enter the Ionic Bonding game and play Levels 1-6 levels. 3. Have your students answer the following questions during gameplay: 1. What combination of ions did you use to successfully match a target? 2.
    [Show full text]
  • Of Grignard Reagent Formation. the Surface Nature of the Reaction
    286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l.
    [Show full text]
  • A Study of Lithium Precursors on Nanoparticle Quality
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021 Electronic Supplementary Information Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: A study of lithium precursors on nanoparticle quality Rana Faryad Ali, Byron D. Gates* Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive Burnaby, BC, V5A 1S6, Canada * E-mail: [email protected] This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant No. RGPIN-2020-06522), and through the Collaborative Health Research Projects (CHRP) Partnership Program supported in part by the Canadian Institutes of Health Research (Grant No. 134742) and the Natural Science Engineering Research Council of Canada (Grant No. CHRP 462260), the Canada Research Chairs Program (B.D. Gates, Grant No. 950-215846), CMC Microsystems (MNT Grant No. 6345), and a Graduate Fellowship (Rana Faryad Ali) from Simon Fraser University. This work made use of 4D LABS (www.4dlabs.com) and the Center for Soft Materials shared facilities supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF), Western Economic Diversification Canada, and Simon Fraser University. S1 Experimental Materials and supplies All chemicals were of analytical grade and were used as received without further purification. Niobium ethoxide [Nb(OC2H5)5, >90%] was obtained from Gelest Inc., and benzyl alcohol (C7H7OH, 99%) and triethylamine [N(C2H5)3, 99.0%] were purchased from Acros Organics and Anachemia, respectively. Lithium chloride (LiCl, ~99.0%) was obtained from BDH Chemicals, and lithium bromide (LiBr, ≥99.0%), lithium fluoride (LiF, ~99.9%), and lithium iodide (LiI, 99.0%) were purchased from Sigma Aldrich.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Submitted to the Requirements For
    THE SYNTIIE$IS OP C LABELLED 2, 4-DICI LOROi-EENOÇYAGETIC ACID by ERNEST GEORGE AWORSKI A THESIS submitted to OREGON STA1 COLLEGE in partial fulfillment or the requirements for the degree of MAS2R 0F SCIENCE June 1950 PROVED: professor ot Clie'thlstry Department In Charge of Major Head of Department of' Chemistry Chairman of School Graduate Conimittee Dean of Graduate School Date thesis is presented Typed by Clara Homyar ACNOWLEDGMNTS The author wishes to express his appreciation to Dr. oseph S. Butts for his eneouragem.ent and generous direction in r4laking this work possible. Grateful aoknowledgnient is given to Dr. Albert V. Logan for his assistance in methodical diff i- culties. This research project was supported by an Atoniic inergy Commission grant carried under Navy contract N7-onr-3 7602. TABLE OF CONTENTS Page I. INTRODUCTION I II. STNTHESI OF ALPHA METH'LENB LABELLED2,14-D . , * 4 A. Apparatus ......*,*., B Method . 7 C. Analysis and }hysica1 Constants 3.7 In. StfliSIs OF C CABBOXTh LABELLED 2LD 19 A. Apparatus . 19 B )kethoc3. , , , , , 23. C. Analysis and PhjsLoa3. Constants 26 Iv DISCUSSION . , , . , , V. SUL2&RY . e e . 30 LTTERATUREOITED .......... 31 I1N1)I. 3 2 THE SYNTHESIS OF C LABELLED 2, 4-DICHLOROHENOXThCETIC ACID I. INTRODUCTION The synthesis or C labelled 2,4-dichlorophen- oxyacetic acid (hereafter referred to as 2,4V-D) was undertaken In order to study the process by which lt exerts its selective herbicidal effect on soiae noxious plants. Should this method prove fruitful, it would be useful for a more systematic approach to the study of ooitounds having potential herbicidal properties.
    [Show full text]
  • S41467-020-19206-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-19206-w OPEN Unravelling the room-temperature atomic structure and growth kinetics of lithium metal Chao Liang 1, Xun Zhang1, Shuixin Xia1, Zeyu Wang1, Jiayi Wu1, Biao Yuan 1, Xin Luo1, Weiyan Liu1, ✉ Wei Liu 1 &YiYu 1 Alkali metals are widely studied in various fields such as medicine and battery. However, limited by the chemical reactivity and electron/ion beam sensitivity, the intrinsic atomic 1234567890():,; structure of alkali metals and its fundamental properties are difficult to be revealed. Here, a simple and versatile method is proposed to form the alkali metals in situ inside the transmission electron microscope. Taking alkali salts as the starting materials and electron beam as the trigger, alkali metals can be obtained directly. With this method, atomic resolution imaging of lithium and sodium metal is achieved at room temperature, and the growth of alkali metals is visualized at atomic-scale with millisecond temporal resolution. Furthermore, our observations unravel the ambiguities in lithium metal growth on garnet-type solid electrolytes for lithium-metal batteries. Finally, our method enables a direct study of physical contact property of lithium metal as well as its surface passivation oxide layer, which may contribute to better understanding of lithium dendrite and solid electrolyte interphase issues in lithium ion batteries. ✉ 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:5367 | https://doi.org/10.1038/s41467-020-19206-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19206-w t has been a long history for the research on alkali metals1, the to control the dose-rate of the electron beam.
    [Show full text]
  • Part I. Inversion of Secondary Cyclic Grignard Reagents
    This dissertation has been , 69-11,692 microfilmed exactly as received PECHHOLD, Engelbert, 1933- STUDIES OF THE BEHAVIOR AND GENERATION OF GARB ANIONS: PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS. PART II. FRAGMENTATION OF AZOFORMATE SALTS AND ACYLAZO COMPOUNDS WITH BASES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ©Copyright "by- Engelbert Pechhold 1969 STUDIES OF THE BEHAVIOR MD GENERATION OF CARBANIONS PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS PART II. FRAGMENTATION OF AZOFORMATE SADIS AND ACYLAZO COMPOUNDS WITH BASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Engelbert Pechhold * # # * * # The Ohio State University 1968 Approved by •pV-gpa.-t— Adviser Department of Chemistry DEDICATION To my wife, Ingrid, and my parents, whose love, understanding, and encouragement have made this venture possible. ii ACKNOWLEDaEMElWS I -wish to express my deepest appreciation to Professor Gideon Fraenkel for suggestinf^ this problem, and for his guidance and encouragement throughout the course of this research. His assistance in the preparation of this dissertation is gratefully acknowledged. It is an understatement to say that without his un­ usual courage of conviction and high standards for academic perfor­ mance, this work could not have come into being. I owe special debt of gratitude to my colleagues for many suimtü-ating discussions of chemical matters and otherwise. In particular, I wish to express my gratitute to Dr. Don Dix, Dr. Dave Mams, and James Morton, who gave me much insight in ny research.
    [Show full text]
  • Ionic Conductivity of Solid Mixtures
    NASA TECHNICAL NOTE NASA-- TN D-4606 d./ *o 0 *o nP LOAN COPY: RRURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Celzter 3 ._i _... Cleveland, Ohio r I t , 1 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MAY 1968 ,/ I I TECH LIBRARY KAFB, NM ,lllllllllll__ .llllllllll I1111 lllllllllllllllll I 023L03b NASA TN D-4606 IONIC CONDUCTIVITY OF SOLID MIXTURES By William L. Fielder Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technicol Information Springfield, Virginia 22151 - CFSTI price $3.00 IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Center SUMMARY The conductivities of four solid mixtures were determined as a function of tempera­ ture: (1) the lithium fluoride - lithium chloride eutectic, (2) the lithium chloride - potassium chloride eutectic, (3) the lithium fluoride - sodium chloride eutectic, and (4) a 50-mole-percent mixture of sodium chloride and potassium chloride. Two conductivity regions were obtained for each of the four mixtures. The activation energies for the conductivity for the lower-temperature regions ranged from 14 to 27 kilocalories per mole (59 to 114 kJ/mole). These energies were similar to the cation migration energies for the single crystals of the alkali halides. The conductivity of the mixtures in the lower-temperature regions is best explained by the following mechanism: (1) formation of cation vacancies primarily by multivalent impurities, and (2) migration of the cations through these vacancies. The activation energies for the conductivity of the solid mixtures in the upper- temperature regions ranged from 5 to 9 kilocalories per mole (20 to 39 kJ/mole).
    [Show full text]
  • Guide to the Jonas and Edna Kamlet / Kamlet Laboratories Records, 1913-1989
    Guide to the Jonas and Edna Kamlet / Kamlet Laboratories records, 1913-1989 Descriptive Summary Title : Jonas and Edna Kamlet / Kamlet Laboratories records Creator: Kamlet, Jonas Kamlet, Edna Dates : N/A ID Number : K27 Size: 190 boxes Abstract: This collection consists of records related to the Kamlet Laboratory and its founders. Chemist. Jonas kamlet and his wife, Edna, founded The Kamlet Laboratory (1940-1979) in New York City. The laboratory's work centered on the research and development of new methods for chemical products as well as identifying interested clients and selling rights to them. The laboratory also provided consultation services to a variety of businesses. Included are: personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Includes personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Language(s): English Repository: Special Collections University of South Florida Libraries 4202 East Fowler Ave., LIB122 Tampa, Florida 33620 Phone: 813-974-2731 - Fax: 813-396-9006 Contact Special Collections Administrative Summary Provenance: Kamlet, Jonas Kamlet, Edna Acquisition Information: Donation. Access Conditions: The contents of this collection may be subject to copyright. Visit the United States Copyright Office's website at http://www.copyright.gov/ for more information. Processing History: processed; Eight separate finding aids were initially made for these collections. However, these finding aids are now being combined to form one collection. Preferred Citation: Kamlet Laboratories Records, Special Collections Department, Tampa Library, University of South Florida, Tampa, Florida.
    [Show full text]