Biological Aspects and the Development
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
First Record of Atlantic Mud Piddock, Barnea (Anchomasa) Truncata (Bivalvia, Pholadidae) in Argentina
Aquatic Invasions (2012) Volume 7, Issue 2: 283–286 doi: http://dx.doi.org/10.3391/ai.2012.7.2.015 Open Access © 2012 The Author(s). Journal compilation © 2012 REABIC Short Communication First record of Atlantic mud piddock, Barnea (Anchomasa) truncata (Bivalvia, Pholadidae) in Argentina Sandra M. Fiori1,2*, Pía Simonetti1 and Eder P. Dos Santos1 1 Instituto Argentino de Oceanografía, P.O. Box 804 (8000) Bahía Blanca, Argentina 2 Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670 (8000) Bahía Blanca, Argentina E-mail: [email protected] (SMF), [email protected] (PS), [email protected] (EPDS) *Corresponding author Received: 29 August 2011 / Accepted: 30 December 2011 / Published online: 28 January 2012 Abstract The present work reports the finding of an exotic bivalve, Barnea (Anchomasa) truncata, in the intertidal zone of the Bahía Blanca Estuary Argentina (38º Lat S), more than 2000 km south from the edge of its native range in South America (21º Lat S, Brazil). Lines of evidence suggest that larval transport by shipping is the probable entry route of this species. The most apparent modification created by the introduction of this species is the generation of greater complexity and habitat heterogeneity in the mud tidal plain of the estuary; the consequent effects on the local biota should therefore be evaluated. Key words: Pholadidae, non-indigenous bivalve, Bahía Blanca estuary, South America Introduction Two species belonging to this group commonly occur on the American Atlantic The introduction of exotic species is considered coasts: Barnea (Anchomasa) truncata (Say, one of the main threats to biodiversity at 1822) and Barnea (Anchomasa) lamellosa different scales and extent (IUCN 2000). -
Mollusca, Pholadidae, Xylophagainae)
Turner: Xylopholas altenai 97 n. gen. n. sp. A new genus and species of deep water wood-boring bivalve (Mollusca, Pholadidae, Xylophagainae) by Ruth+D. Turner Museum ofComparativeZoology, Harvard University, Cambridge,Mass., U.S.A. The Xylophagainae are marine wood-boring bivalves which are confined than 150 largely to depths greater meters. They are not found the intertidal the sublittoral in zone, occur in only in higher latitudes, and are the sole wood-borers in depths over 200 meters. The greatest known depth for the invasion oftest wood by Teredini- dae is 200 meters (Tipper, 1968). The known depth range for the Xylophagainae extends from two meters below low tide in Millport, Scotland, to 7290 meters in the Banda Trench, off Ceram. Only occasionally are they found in drift wood, and this is usually after storms, the water logged wood having been lifted offthe bottom and carried ashore by strong waves. The discovery of the new genus and species described here is the result of a world-wide study of the Xylophagainae, a subfamily of the Pholadidae characterized by teredinid-like shells and a small, divided mesoplax. They lack apophyses (as do the Jouannetiinae) and do not produce a callum in the adult stage (as in the Phola- in dinae). They are unique among the Pholadidae having a wood- storing caecum. The author is grateful to Dr. Frederick Bayer, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Dr. J0r- gen Knudsen, Universitetets Zoologiske Museum, Copenhagen, Den- mark, and Dr. W. Adam, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium, for the loan of specimens and the opportunity to remove specimens from dredged wood or other plant material in their collections. -
Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks. -
Decision IG.24/7 Strategies and Action Plans Under the Protocol
UNEP/MED IG.24/22 Page 372 Decision IG.24/7 Strategies and Action Plans under the Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean, including the SAP BIO, the Strategy on Monk Seal, and the Action Plans concerning Marine Turtles, Cartilaginous Fishes and Marine Vegetation; Classification of Benthic Marine Habitat Types for the Mediterranean Region, and Reference List of Marine and Coastal Habitat Types in the Mediterranean The Contracting Parties to the Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and its Protocols at their 21st Meeting, Recalling the outcome document of the United Nations Conference on Sustainable Development, entitled “The future we want”, endorsed by the General Assembly in its resolution 66/288 of 27 July 2012, in particular those paragraphs relevant to biodiversity, Recalling also General Assembly resolution 70/1 of 25 September 2015, entitled “Transforming our world: the 2030 Agenda for Sustainable Development”, and acknowledging the importance of conservation, the sustainable use and management of biodiversity in achieving the Sustainable Development Goals, Recalling further the United Nations Environment Assembly resolutions UNEP/EA.4/Res.10 of 15 March 2019, entitled “Innovation on biodiversity and land degradation”, Bearing in mind the international community’s commitment expressed in the Ministerial Declaration of the United Nations Environment Assembly at its fourth session to implement sustainable ecosystems -
European Red List of Non-Marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert
European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission. This publication has been prepared by IUCN (International Union for Conservation of Nature) and the Natural History of Bern, Switzerland. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the Natural History Museum of Bern or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the Natural History Museum of Bern or the European Commission. Citation: Cuttelod, A., Seddon, M. and Neubert, E. 2011. European Red List of Non-marine Molluscs. Luxembourg: Publications Office of the European Union. Design & Layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: The rare “Hélice catalorzu” Tacheocampylaea acropachia acropachia is endemic to the southern half of Corsica and is considered as Endangered. Its populations are very scattered and poor in individuals. This picture was taken in the Forêt de Muracciole in Central Corsica, an occurrence which was known since the end of the 19th century, but was completely destroyed by a heavy man-made forest fire in 2000. -
STATE of BIODIVERSITY in the MEDITERRANEAN (2-3 P
UNEP(DEC)/MED WG.231/18 17 April 2003 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of the MED POL National Coordinators Sangemini, Italy, 27 - 30 May 2003 STRATEGIC ACTION PROGRAMME GUIDELINES DEVELOPMENT OF ECOLOGICAL STATUS AND STRESS REDUCTION INDICATORS FOR THE MEDITERRANEAN REGION In cooperation with UNEP Athens, 2003 TABLE OF CONTENTS Pages 1. INTRODUCTION ......................................................................................................... 1 2. AIMS OF THE REPORT .............................................................................................. 2 3. STATE OF BIODIVERSITY IN THE MEDITERRANEAN............................................. 2 Species Diversity................................................................................................................. 2 Ecosystems/Communities .................................................................................................. 3 Pelagic ............................................................................................................................... 3 Benthic ............................................................................................................................... 4 4. ECOSYSTEM CHANGES DUE TO ANTHROPOGENIC IMPACT............................... 6 Microbial contamination...................................................................................................... 6 Industrial pollution .............................................................................................................. 6 Oil -
Invertebrate Paleontology Earth Sciences Division Natural History
Invertebrate Paleontology 19^ Earth Sciences Division Natural History Mu 3311m A NEW SPECIES OF CHIMNEY-BUILDING PENITELLA FROM THE GULF OF ALASKA (BIVALVIA: PHOLADIDAE) * LIBRARY 'Ol ANGBIES GOIJNTV \i: A>., , -APOsrr.'ON GEORGE L. KENNEDY AND JOHN M. ARMENTROUT 1 Made in United States of America Reprinted from THE VELIGER Vol. 32, No. 3, July 1989 © California Malacozoological Society, Inc., 1989 THE VELIGER © CMS, Inc., 1989 The Veliger 32(3):320-325 (July 3, 1989) A New Species of Chimney-Building Penitella from the Gulf of Alaska (Bivalvia: Pholadidae) by GEORGE L. KENNEDY Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA AND JOHN M. ARMENTROUT Mobil Oil Corporation, New Exploration Ventures, P.O. Box 650232, Dallas, Texas 75265, USA Abstract. Penitella hopkinsi sp. nov., from the Gulf of Alaska, differs from other species in the genus by its blunt and thickened posterior margin that inserts against the base of a chimney of agglutinated sediment (unique in the genus), by the shape of the mesoplax, and by details of the umbonal reflection and dorsal extension of the callum. Anatomy is unknown. Late Pleistocene records of the species range from the Seward Peninsula, Alaska, to Point Arena, California. INTRODUCTION acology]); MCZ, Museum of Comparative Zoology, Cam- bridge; NMC, National Museum of Natural Sciences, Recent efforts to identify several enigmatic species of Peni- Ottawa; NSMT, National Science Museum, Tokyo; tella Valenciennes, 1846, from both the northeastern and SBMNH, Santa Barbara Museum of Natural History, northwestern Pacific revealed that a number of nomencla- Santa Barbara; UCLA, University of California, Los An- tural and taxonomic problems in the genus still need to geles (collections at LACM); UCMP, University of Cal- be resolved (KENNEDY, 1985). -
Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale). -
Marine Invasive Species in Nordic Waters - Fact Sheet
NOBANIS - Marine invasive species in Nordic waters - Fact Sheet Petricola pholadiformis Author of this species fact sheet: Kathe R. Jensen, Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, 2100 København Ø, Denmark. Phone: +45 353-21083, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Jensen, Kathe R. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Petricola pholadiformis – From: Identification key to marine invasive species in Nordic waters – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Species name Petricola pholadiformis, Lamarck, 1818 Synonyms Petricolaria pholadiformis. Common names American piddock, American rock-borer (U.K.), False angel wing (USA), Amerikansk boremusling (DK), Amerikansk boreskjell (NO), Amerikansk borrmussla (SE), Amerikanische Bohrmuschel, Engelsflügel (DE), Amerikaanse boormossel (NL). Identification Although the shell is externally similar to the native true piddocks Barnea candida (Linnaeus, 1758), Pholas dactylus Linnaeus, 1758, and Zirfaea crispata (Linnaeus, 1767), this species belongs to a different superfamily, the Veneroidea. It is usually referred to a separate family, the Petricolidae, but recent phylogenetic analysis has shown that it may be included in the family Veneridae (Mikkelsen et al., 2006). The true piddocks belong to the family Pholadidae, which have a distinct tooth-like attachment, apophysis, internally at the hinge-line. In P. pholadiformis the hinge have regular cardinal teeth, two in the right valve and three in the left. Also, Pholadidae often have accessory shell plates, which are not found in P. pholadiformis. Petricola pholadiformis preserved specimens Petricola pholadiformis shell external Petricola pholadiformis interior shell with cardinal teeth Barnea candida – white piddock, see: • Conchological Society of Great Britain & Ireland • Marine Life Information Network Distribution: DK: North Sea, Wadden Sea, Skagerrak, Limfjord, Kattegat, northern Belt Sea. -
Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy, and Paleogeographic Implications
The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy, and paleogeographic implications DARÍO G. LAZO Lazo, D.G. 2007. The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy, and paleogeographic implications. Acta Palaeontologica Polonica 52 (2): 375–390. Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Tem− perate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio For− mation (Valanginian–Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was fa− cies−dependent being restricted to well−oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida, deep burrow− ing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension−feed− ing habit, not a pedal−feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian–Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal−ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone. -
Scholars in Action Past–Present–Future
ACTA UNIVERSITATIS UPSALIENSIS Nova Acta Regiæ Societatis Scientiarum Upsaliensis Ser. V: Vol. 2 Scholars in Action Past–Present–Future Lars Engwall Cover pictures: Title page of an Uppsala dissertation in 1740 (Uppsala University Library, cf. Figure 2.2) and the ATLAS experiment during the assembly phase in October 2005 (The ATLAS collaboration, cf. Figure 8.7). Eric Benzelius (1675-1743) the Younger, Founder of the Royal Society of Sciences Painting by Johan Henrik Scheffel (1690-1781) Seal of the Royal Society of Sciences at Uppsala Abstract Engwall, L. (ed.), Scholars in Action: Past–Present–Future. Acta Universitiatis Upsaliensis. Nova Acta Regiæ Societatis Scientiarum Upsaliensis. Ser. V: Ser. V: Vol. 2, 224 pp. Uppsala. ISBN 978-91-554-8304-3 This volume contains the contributions to a symposium on the conditions of research on the occasion of the Tercentary of the Royal Society of Sciences at Uppsala. After an introductory chapter on the early years of the Society, subsequent chapters present views of foreign mem- bers representing the Humanities, the Life Sciences, the Natural Sciences, and the Social Sciences. Comments on each of the chapters are provided by Swedish members. A concluding chapter discusses the influence of governments, markets and media on academic institutions. Keywords: Research, scholars, science policy, innovation, academic institutions, governance. The Royal Society of Sciences at Uppsala, S:t Larsgatan 1, S-753 10 Uppsala, Sweden © The authors 2012 ISBN 978-91-554-8304-3 Printed in Sweden by Edita Västra Aros, Västerås 2012 Distributor: Uppsala University Library, Box 510, SE- 751 20 Uppsala www.uu.se, [email protected] Contents Preface ......................................................................................................... -
Who Played a Key Role During the Development of Our Modern-Day Taxonomy and How Does the World Register of Marine Species Contribute to This?
Report Who played a key role during the development of our modern-day taxonomy and how does the World Register of Marine Species contribute to this? By Daisy ter Bruggen Module LKZ428VNST1 Project internship Van Hall Larenstein, Agora 1, 8934 AL Leeuwarden [email protected] Abstract: Our Western taxonomy officially began with Linnaeus. Nevertheless, equally important discoveries and research has been done long before the Linnaean system was introduced. Aristotle and Linnaeus are two of the most well-known names in history when discussing taxonomy and without them the classification system we use today might have never existed at all. Their interest, research and knowledge in nature was influenced by their upbringing and played a major factor in the running of their lives. Introduction The definition of taxonomy according to the Convention on Biological Diversity “Taxonomy is the science of naming, describing and classifying organisms and includes all plants, animals and microorganisms of the world” (2019). Aristotle and Linnaeus are two of the most well-known names in history when discussing taxonomy and without them the classification system we use today might have never existed at all. Their interest, research and knowledge in nature was influenced by their upbringing and played a major factor in the running of their lives. Aristotle (384 BC-322 BC) was a Greek philosopher. He was born in Stagira, a small town in Macedonia, Northern Greece (Voultsiadou, Gerovasileiou, Vandepitte, Ganias, & Arvanitidis, 2017). At the age of seventeen, he went to Athens, and studied in Plato’s Academy for 20 years. Which is where he developed his passion to study nature.