Aminostratigraphy of European Marine Interglacial Deposits 2T7

Total Page:16

File Type:pdf, Size:1020Kb

Aminostratigraphy of European Marine Interglacial Deposits 2T7 Quaternary Science Reviews.Vol.4, pp. Zf5-278,1985. 0277-379'tt85$0.00 + .50 Printed in Great Britaln. All rishts reserved. Copyright@ 1986Pergamon Journals Ltd. AMINOSTRATIGRAPHY OF EUROPEANMARINE INTERGLACIAL DEPOSITS Gifford H. Miller* and Jan Mangerudf * INSTAAR and Dept. of GeologicalSciences, Campus Box 450, Universityof Colorado, Boulder, CO 80309,U.S.A. I Departmentof Geology,Sec. B, All6gt. 41, Universityof Bergen,N-5000 Bergen, Norway Received28 January1986 With contributionsb-v: K.S. Petersen DanmarksGeologiske Undersogelse 31, Thoravej ,2400 Kobenhavn NV, Denmark H.P. Sejrup GeologiskInstitutt, Avd. B Universiteteti Bergen, 5000 Bergen, Norway W. Zagwijn Rijks GeologischeDienst. Spaarne 17,2000 AD, Haarlem.Netherlands B. Menke GeologischesLandesamt Schleswig-Holstein, Postfach 5049, 2300 Kiel 21, F.R.G. V. Gudina Institute of Geology and Geophysics,Siberian Branch Academy of Sciencesof the U.S.S.R..Novosibirsk-90. U.S.S.R. R. Paepe Quaternaryand MarineGeology, Belgische Geologische Dienst, Jenner- straat,13, 1(X0Brussels, Belgium V. Yevzerov Instituteof Geology,Kola Branchof the Academyof Sciencesof the U.S.S.R.,Apatity, U.S.S.R. J.M. Punning Institute of Geology,Academy of Sciencesof the E.S.S.R.,Tallinn 200001.Estonia 7. U.S.S.R. A. Makowska InstytutGeologiczny, ul Radowiecka4,00-975 Warszawa, Poland T. Pisse GeologicalSurvey of Sweden,Kungsgaten 4, 4lI 19 Gciteberg,Sweden K.-L. Knudsen Laboratorietfor Palaeontologiog Stratigrafi.Geologisk Institut, Aarhus Universitet,8000 Aarhus C, Denmark A.-L. Lykke-Andersen Labyrinten 17, 8220Brabrand, Denmark T. Meijer Rijks GeologischeDienst. Spaarne 17..2000 AD, Haarlem,Netherlands J. Somm6 Laboratoirede G6omorphologieet d/Etudedu Quaternaire,Universitd des Scienceset Techniquesde Lille, 59655Villeneuve d'Ascq C6dex, France G. Linke GeologischesLandesamt Freie und Hansestadt Hamburg, Oberstrasse 88, 2000Hamburg 13, F.R.G. C. Baeteman Quaternaryand MarineGeology, Belgische Geologische Dienst, Jenner- straat,13, 1040Brussels, Belgium W. Hinsch GeologischesLandesamt Schleswig-Holstein. Postfach 5049, 2300 Kiel 21, F.R.G. D. Goter INSTAAR, CB 450.University of Colorado.Boulder, CO 80309,U.S.A. J. Brigham-Grette Departmentof Geology,University of Alberta,Edmonton, Alberta. T6G 2E3. Canada J. Hollin INSTAAR, CB 450,University of Colorado.Boulder, CO 80309,U.S.A. 2t5 216 CiffordH. Millerand Jan Mangerud Molluscanfossils collected from shallowwater marine sediment across NW Europeand havebeen analysed for the extentof isoleucineepimerization (D/L nearbyArctic regions 'classical' ratio)in indigenousprotein residues. The D/L ratiosconfirm that essentially all EemiansiteJ from NW Europeare of the sameage. and are correlativewith the type localitynear Amersfoortin the Netherlands;shells from interglacialmarine sediment beneaihthe typeWeichselian till in Polandalso correlate with the typeFemian sile. D/L ratiosin Holiteinianmarine shells (0.29) are substantiallyhigher than in their Eemian counterparts(0.17);'Late Cromerian'shells yield even higherratios (0.46). D/L ratiosin lateglaiial shells (0.06) and Middle Weichselian shells (0.09) permit differentiation from modirn (0.01)and last interglacialmaterial. Based on the positionof the Matuyama- Brunhesboundarv and the differencesin D/L ratios,the Eemianmust correlatewith isotopesubstage 5e, whereasthe Holsteinianis mostlikely substage 7c, possiblystage 9 but iertainly youngerthan stage 11. Intra-Saalianwarm periods may be terrestrial equivalentsof the youngersubstages of stage7. Extensive.pre-Eemianmarine sediments albngthe SW coastof Denmark previouslycorrelated with the Holsteinianare shownto be oi'Late Cromerian'age.The underlyingtill thereis thefirst widespread evidence of a pre-Elsteriantill in NW EuroPe. D/L ratios in moiluscsfrom last interglacialsites along the Arctic coastof the USSR. the Arctic Islandsand easternGreenland are substantially lower than in theirEuropean counterpartsdue to their low thermalhistories. The combinedmid- and high-latitude data are usedto developa predictivemodel for the expectedDiL ratio in any of several moderateepimerization-rate taxa for last interglacialsites with mean temperatures between-20 and +15'C. Not all sites could be unambiguouslyassigned to an establishedinterglacial. The Fjosanger(Norway) and Margareteberg (Sweden) sites previously_thought to be Eemian. yietOOll ratios higher than in securenearby Eemian material. It is yet unresolved whetherthese are aberrantsites or if they predatethe last interglacial.1n situ shoreline depositsencountered in boringsin SW Belgiumand in expo_sureson the Belgiumcoastal plain contain molluscsthat yield D/L ratios intermediatebetween secure Eemian and Late Weichselianratios, raising the possibilitythat'a late stage5 high-sea-levelevent attained near-modern levels in the southern North Sea basin. Resolution of these uncertaintiesis the focusof future work. INTRODUCTION Despitenearly a century of investigation,the Quaternarystratigraphy of Northwest Europehas yet to be fully resolved.The classicalland-based sequence in NorthwestEurope (Table1) is basedon end-morainesystems and correlative till beds.and the palynologyand faunal assemblagesin associatedterrestrial and shallow-watermarine sequences.Three mainglacial stages are widely recognized: the Elsterian,Saalian and Weichselianseparated by the Holsteinianand Eemianinterglacials. Over the last decadeseveral pre-Elsterian climatic oscillationshave also been described(e.g. Menke, 1970; Zagwijn, I9151. Brunnackeret at..1982 Urban, 1982;Nilsson, 1983), but their occurrenceis relativelyrare andregional correlation remains somewhat ambiguous. The Matuyama-Brunhesboundary 'Cromerian has been identified in the lower portion of the complex'(Zagwijn. 1975; Brunnackerand Boenik, 1976 Zagwijn and Doppert, 1978; Brunnacker1979). The number of glacial-interglacialcycles in Europe betweenMatuyama-Brunhes and the Elsterianis uncertain,but seldomare more than three proposed, giving altogether six after the Matuyama-Brunhesboundary. In contrast,the deep-seaoxygen-isotype stratigraphy (e.g.Shackleron and Opdyke,1973) implies that there have been eight glaciations since the Aminostratigraphy of European Marine Interglacial Deposits 2t7 TABLE 1. Classical subdivision of the middle and late Quaternary of NW Europe Holocene (lnterglacial) Late Pleistocene Weichselian (Glacial) Stage Eemian (Interglacial) Middle Pleistocene Saalian (Glacial) Stage Holsteininian (Interglacial) Elsterian (Glacial) Stage Probably Four Temperate and Three Cold StagesCollectively Called the 'Cromerian Complex' Earlv Pleistocene Six named stages Matuyama-Brunhesboundary. The apparentdiscrepancy between the deep-seaand land- baseclstratigraphy has stimulated additional investigations into the continentalrecord, and the correlationand dating of Quaternarydeposits in northwesternEurope has been vigorouslydebated in meetingsand papersin recentyears. At presenta widelyheld view is that the classicalpost-Elsterian interglacial sequence is probably correct (e.g. Ehlers et al., 1984),and that knowledgeof the pre-Elsterian 'missing' sequ"nceis so fragmentarythat it may accommodatethe interglacials.In this interpretation,the post-Eemianwarm intervals(e.g. St. GermainI and II of Woillard, 1978) are consideredto be interstadialswithin the Weichselian,and the Wacken/ Dcimnitzianand Holsteinian(seruu stricto) are consideredto representa singleinterglacial complex,the Holsteinian(sensu lato). The inescapableconclusion from this perspectiveis thatisotope stage 1 is the Holocene,2-5d the Weichselian,5e the Eemian(e.g. Shackleton, 1967;Mangerud er a\.,1,979),stage 6 the Saalian,stage 7 the Holsteinianand stage8 the Elsterian. Opposingthis interpretationare severalrecent proposals that more than three post- Elsterianinterglacials occur. Kukla (1977),followed by Bowen (1978,1979) argued that sitesclassified as Eemian may representmore than one interglacialthat havebeen grouped as a singleevent. The type Eemiansite in the Netherlandswas proposed as the oldestof theseinterglacials (Kukl a, t977). In their scheme, the Holsteinian(sensu stricto) is ascribed to isotopestage 11 or 13rather than stage 7 asin a classicalinterpretation. Earlier Frenzel (1973)had arguedthat the pollenstratigraphy of interglacialsites in Germanycould not be accountedfor by the classicalinterglacial sequence and additionalinterglacials must be present;he proposedtwo intra-Saalian(sensu lato) interglacials.In East Germany,Cepek and Erd (e.g. Cepekand Erd, 1982;Cepek , 1967)have long claimedthat at leasttwo and possiblythree interglacialsoccurred between the Holsteinian(sensa stricto) and the Eemian:the Domnitzian,an un-namedSaalian I/II event,and the Rtigenan.Similarly' Stremme(1982) and Sarntheimand Stremme(1984) proposed correlation of the Eemian with isotopesubstage 5e, the Holsteinianwith isotopestage 11, with two intra-Saalian interglacialsas the terrestrialcorrelatives of isotopestages 7 and 9, a view supportedby Bowin (1985).The lack of reliableindependent dating methodologies that canbe applied to terrestrialsites has hampered resolution of this conflict,although new effortsin U/Th. electron-spinresonance and thermoluminescencedating are in progress. 2rB Gifford H. Miller and Jan Mangerud an In 1979,partially in responseto the challengeof possiblemiscorrelation. but alsoin interglacial attempt to obtain an integratedchronostratigraphy of the Europeanmarine of isoleucine ,.qu"nr". we inrtiatedu p.ogtu* to determinesystematically the extent along epimerizationin marinetnollut.t from interglacialsites
Recommended publications
  • Pleistocene - History of Earth's Climate
    Pleistocene - History of Earth's climate http://www.dandebat.dk/eng-klima5.htm History of Earth's Climate 5. - Cenozoic II - Pleistocene Home DH-Debate 4. Tertiary Introduction - The Pleistocene Ice Ages - The climate in the ice-free part of the World - During Last Glacial Maximum, the World became cold and 6. End of Pleistocene dusty - Temperature and CO2 - Milankovic Astronomical Climate Theory - Interglacials and other warm Periods - The Super volcano Toba - Links og literature Introduction Pleistocene is the period in Earth's history that we commonly refer to as the Ice Age. Through much of this period, the Earth's northern and southern regions were covered by kilometer thick glaciers. It is important to recognize that the Pleistocene was a series of real ice ages, separated by relatively short interglacial periods. The Pleistocene started 2.6 million years ago and lasted until the termination of the Weichsel glaciation about 11,711 years ago. Timeline of Earth's geological periods. Time progresses from right to left. The glowing inferno just after Earth was formed is named Hadean. In Archean water condensed and an atmosphere of nitrogen and methane was formed together with the first rocks that we know about. In Proterozoic cyano bacteria produced oxygen, which oxidized iron and methane, in the end of the period life emerged on the seabed. Phanerozoic represents the era in which there have been visible tangible life. It is divided in Paleozoic, Mesozoic and Cenozoic. Paleozoic was the period of early life. Mesozoic was the time of the dinosaurs, and Cenozoic is the era of mammals, which latter further is divided into Tertiary and Quaternary.
    [Show full text]
  • D. Palaeozoological Research
    Eiszeitalter u. Gegenwart Band 23/24 Seite 333-339 Öhringen/Württ., 15. Oktober 1973 D. Palaeozoological Research by HORST REMY, Bonn translated by U. BUREK, S. CHRULEV and R. THOMAS, Tübingen 1. Molluscs Comprehensive studies of Pleistocene land- and freshwater molluscs have so far been largely restricted to the faunas of interglacial and Würmian glacial deposits, and to the history of postglacial faunas. ANT has reconstructed the postglacial history of changes in landsnail distributions in NW-Germany and Westphalia (ANT 1963a, 1967). The present day fauna consists of a preexisting fauna ("Urfauna") together with postglacial immi­ grants. The elements of the "Urfauna" are eurythermal species, which were already living in NW-Germany during Würm Glaciation. These species comprise about 24 °/o of the present day fauna. In the South German periglacial region this portion is rather higher. Microclimatic conditions must have been more favourable in this region, presumably because the influence of the alpine ice mass was not as strong as that of the continental ice sheet to the north. There were many ecological niches whose local climates were more favourable for the survival of such species. Along the south coast of England, SW of the land connection with the continent, several migrant species survived (Atlanto-Britannic Fauna). In the forested region west of the Urals, the species wich today constitute the Siberio-Asiatic Fauna survived, while the immigrant species of the Mediterranean Fauna survived on the E-coast of Spain, on the W-coast of Italy and SE-Europe. It is not yet certain where some of the immigrant species lived during the glaciation; possibly these forms survived the ice age in S-Germany and the adjoining regions.
    [Show full text]
  • Cypris 2016-2017
    CYPRIS 2016-2017 Illustrations courtesy of David Siveter For the upper image of the Silurian pentastomid crustacean Invavita piratica on the ostracod Nymphateline gravida Siveter et al., 2007. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, and M.D. Sutton. 2015. A 425-million-year- old Silurian pentastomid parasitic on ostracods. Current Biology 23: 1-6. For the lower image of the Silurian ostracod Pauline avibella Siveter et al., 2012. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, M.D. Sutton, and S.C. Joomun. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proceedings of the Royal Society London B, 280 20122664. DOI:10.1098/rspb.2012.2664 (published online 12 December 2012). Watermark courtesy of Carin Shinn. Table of Contents List of Correspondents Research Activities Algeria Argentina Australia Austria Belgium Brazil China Czech Republic Estonia France Germany Iceland Israel Italy Japan Luxembourg New Zealand Romania Russia Serbia Singapore Slovakia Slovenia Spain Switzerland Thailand Tunisia United Kingdom United States Meetings Requests Special Publications Research Notes Photographs and Drawings Techniques and Methods Awards New Taxa Funding Opportunities Obituaries Horst Blumenstengel Richard Forester Franz Goerlich Roger Kaesler Eugen Kempf Louis Kornicker Henri Oertli Iraja Damiani Pinto Evgenii Schornikov Michael Schudack Ian Slipper Robin Whatley Papers and Abstracts (2015-2007) 2016 2017 In press Addresses Figure courtesy of Francesco Versino,
    [Show full text]
  • Available As PDF
    ID Locality Administrative unit Country Alternate spelling Latitude Longitude Geographic Stratigraphic age Age, lower Age, upper Epoch Reference precision boundary boundary 3247 Acquasparta (along road to Massa Martana) Acquasparta Italy 42.707778 12.552333 1 late Villafranchian 2 1.1 Pleistocene Esu, D., Girotti, O. 1975. La malacofauna continentale del Plio-Pleistocene dell’Italia centrale. I. Paleontologia. Geologica Romana, 13, 203-294. 3246 Acquasparta (NE of 'km 32', below Chiesa di Santa Lucia di Burchiano) Acquasparta Italy 42.707778 12.552333 1 late Villafranchian 2 1.1 Pleistocene Esu, D., Girotti, O. 1975. La malacofauna continentale del Plio-Pleistocene dell’Italia centrale. I. Paleontologia. Geologica Romana, 13, 203-294. 3234 Acquasparta (Via Tiberina, 'km 32,700') Acquasparta Italy 42.710556 12.549556 1 late Villafranchian 2 1.1 Pleistocene Esu, D., Girotti, O. 1975. La malacofauna continentale del Plio-Pleistocene dell’Italia centrale. I. Paleontologia. Geologica Romana, 13, 203-294. upper Alluvial Ewald, R. 1920. Die fauna des kalksinters von Adelsheim. Jahresberichte und Mitteilungen des Oberrheinischen geologischen Vereines, Neue Folge, 3330 Adelsheim (Adelsheim, eastern part of the city) Adelsheim Germany 49.402305 9.401456 2 (Holocene) 0.00585 0 Holocene 9, 15-17. Sanko, A.F. 2007. Quaternary freshwater mollusks Belarus and neighboring regions of Russia, Lithuania, Poland (field guide). [in Russian]. Institute 5200 Adrov Adrov Belarus 54.465816 30.389993 2 Holocene 0.0117 0 Holocene of Geochemistry and Geophysics, National Academy of Sciences, Belarus. middle-late 4441 Adzhikui Adzhikui Turkmenistan 39.76667 54.98333 2 Pleistocene 0.781 0.0117 Pleistocene FreshGEN team decision Hagemann, J. 1976. Stratigraphy and sedimentary history of the Upper Cenozoic of the Pyrgos area (Western Peloponnesus), Greece.
    [Show full text]
  • The Classical European Glacial Stages: Correlation with Deep-Sea Sediments
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 1978 The Classical European Glacial Stages: Correlation with Deep-Sea Sediments George Kukla Columbia University Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Life Sciences Commons Kukla, George, "The Classical European Glacial Stages: Correlation with Deep-Sea Sediments" (1978). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 334. https://digitalcommons.unl.edu/tnas/334 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Transactions of the Nebraska Academy of Sciences- Volume VI, 1978 THE CLASSICAL EUROPEAN GLACIAL STAGES: CORRELATION WITH DEEP-SEA SEDIMENTS GEORGE KUKLA Lamont-Doherty Geological Observatory Of Columbia University Palisades, New York 10964 Four glacials and three interglacials, recognized by classical sea record revealed that this is not the case. In order to learn Alpine and North-European subdivisions of the Pleistocene, were cor­ the reasons for the discrepancy, we identified the type units related with continuous oxygen-isotope records from the oceans using and their boundaries at the type localities, correlated them loess sections and terraces as a link (Fig. 15). It was found that the Alpine "glacial" stages are represented by sediments formed during with the standard stratigraphic system, and tried to recognize both glacial and interglacial climates, that the classical Alpine "inter­ their true climatic characteristics.
    [Show full text]
  • The Stratigraphic Table of Germany 2016 (STG 2016)
    Menning, M. (2018): Die Stratigraphische Tabelle von Deutschland 2016 (STD 2016). The Stratigraphic Table of Germany 2016 (STG 2016). - Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 169, 2, 105-128. https://doi.org/10.1127/zdgg/2018/0161 Institional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/ 1 Die Stratigraphische Tabelle von Deutschland 2016 (STD 2016) / The Stratigraphic Table of Germany 2016 (STG 2016) Manfred Menning *Anschrift der Autors: Dr. Manfred Menning, Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegraphenberg, 14473 Potsdam ([email protected]) Kurzfassung Intention und Realität der Stratigraphischen Tabelle von Deutschland 2016 (STD 2016) werden dargestellt. Den Zeitabschnitten Ediacarium bis Silur sowie Späte Trias bis Quartär liegt die Zeitskala der GTS 2012 (Geological Time Scale 2012) zu Grunde. Für das Devon wurde eine eigene Zeitskala entwickelt, für Karbon und Perm wird die Zeitskala der Stratigraphischen Tabelle von Deutschland 2002 (STD 2002) genutzt und für die Frühe und Mittlere Trias die Zeitskala der Erläuterungen 2005 zur Stratigraphischen Tabelle von Deutschland 2002 (ESTD 2005). Die Alter der paläozoischen und mesozoischen Stufen sind auf 0,5 Ma bzw. 1 Ma gerundet. Die zeitliche Einstufung vieler mitteleuropäischer Einheiten in die Globale Stratigraphische Skala ist variabel und nicht endgültig. Dies verdeutlichen Pfeile an zahlreichen Schichtgrenzen. Dargestellt sind möglichst viele gebräuchliche Schichten mit ihren aktuellen Namen und zusätzlich auch oft mit ihren eingebürgerten, aber inzwischen obsoleten Namen. Umstritten ist die Existenz nahezu beckenweiter Schichtlücken, so im Keuper, während solche Lücken im höheren Rotliegend und an der Kreide-Tertiär-Grenze auch im Norddeutschen Becken weithin akzeptiert werden. Neuigkeiten gegenüber der STD 2002 und ausgewählte, darunter grundlegende stratigraphische Probleme sowie Besonderheiten in den einzelnen Zeitabschnitten der STD 2016 werden diskutiert.
    [Show full text]
  • The Occurrence 1834) in Britain. of Micrasema Setiferum
    © Hans Malicky/Austria; download unter www.biologiezentrum.at 21 BRAUERIA (Lunz am See, Austria) 35:21-22 (2008) VERNEAUX (1972) describes the ecology of this species in the Jura Mountains where the larvae, often occurring in large The occurrence of Micrasema setiferum (PlCTET numbers, colonise mosses in flows of+/- 20-70 cm/sec and at 1834) in Britain. water depths of 25-60 cm. In the River Doubs, where much of this study was undertaken, the water temperature ranged from 1.4-21.6 °C, an annual range of 20.2 °C. M.T.GREENWOOD The present distribution of Micrasema setiferum is shown in This note is to supplement the data presented by GREEN et al GREENWOOD et al (2003). In this paper, the present (2006), following an extensive multidisciplinary study of, geographical distribution has been converted into climate what are considered to be fluvial deposits from a short time space, this being described by plotting the mean temperature interval within a late Middle Pleistocene interglacial (Marine of the warmest month (Tmax) against the difference between Isotope Stage 9). From the organic sands and silts at the mean temperature of the coldest month and that of the Hackney, north London, the plant, mollusc and insect warmest month, usually July and January, in °C (Trange). (Colcoptera) assemblages, all suggest a climate more Using this procedure, the conditions tolerated by M. setiferum continental than that found in southern Britain today. fall within a climate envelop of greater continentality, than exists in the Trent valley today. In the course of preparing material for the above paper, Professor G.R.Coope, having concentrated on fossil The significance of this find in MIS9 is that it is the oldest Coleoptera, also collected frontoclypeal, pronotal and record of this species in Britain and of only the third known mesonotal fragments of larval Trichoptera, sending these to locality.
    [Show full text]
  • Part 2: the Scientific Data Relative to the Biblical Teaching of Genesis 1-11
    441 Part 2: The scientific data relative to the Biblical teaching of Genesis 1-11. Chapter 1: General Theology of Scientific Evidences for the Creator & Bible: a] “God” hath “left not himself without witness” (Acts 14:15,17). b] Biblical creation model to be scientifically compared and contrasted with the Book of Nature. Chapter 2: “The creation of the world” (Rom. 1:20): the generally united old earth creationist school. a]i] Cosmology (The First Cause): “In the beginning God created” (Gen. 1:1), the universe & how at the time of the Big Bang God made matter out of nothing at all! a]ii] Cosmology (The First Cause): The “creation” claims of the world’s largest Infidel religion, Mohammedanism, as found in the Koran; and also the “creation” claims of the world’s two largest heathen religions, Buddhism & Hinduism; are not scientific. b] Teleology (Design): i] “God created the heaven and the earth” (Gen. 1:1) & the Anthropic Principle. ii] “In the beginning God” (Gen. 1:1): The Anthropic Principle subject to the Theocentric Principle (Isa. 46:9,10). iii] “God created … the earth” (Gen. 1:1): Earth’s Solar System. iv] “God created … the earth” (Gen. 1:1): Earth-Sun-Moon system. v] “God created … the earth” (Gen. 1:1) – but how “old” is the “old … earth” (Ps. 102:25)? Chapter 3: “God created … the earth” (Gen. 1:1): uniformitarianism & catastrophism. a] From Xenophanes to William Hutton. b] Adam Sedgwick (old earth creationist) verses Charles Lyell (anti- supernaturalist uniformitarianism). c] Thomas Chalmers (old earth creationist) verses Charles Lyell’s type of anti-supernaturalist uniformitarianism.
    [Show full text]
  • The Ice Caps on the Northern Continents, the Alpine Glaciers Grew and Sent Their Ice Streams As Far As the Swiss Plateau in the North and the Southern Alpine Valleys
    Book Sur les traces de l'histoire de la Terre en Suisse WILDI, Walter Abstract La Suisse est un petit pays sur cette planète. Son histoire géologique est certainement plus ancienne, mais seules les quelque 300 derniers millions d'années sont suffisamment documentées pour raconter l'histoire que le pays partage avec la Terre entière. Ce livre décrit un voyage géologique à travers le temps et la Suisse, depuis les forêts tropicales, par les déserts de sel et la mer alpine tropicale au plissement alpin, au froid arctique et au changement climatique moderne. Auf den Spuren der Erdgeschichte in der Schweiz Die Schweiz ist ein kleiner Fleck auf diesem Planeten. Ihre Geschichte ist sicher älter, aber einzig die letzten etwa 300 Millionen Jahre sind hinreichend dokumentiert, um die Geschichte zu erzählen, welche das Land mit der ganzen Erde teilt. Dieses Buch beschreibt eine geologische Zeit- und Schweizerreise von tropischen Regenwäldern durch Salzwüsten und das warme Alpenmeer zur Alpenfaltung, zu arktischer Kälte und dem heutigen Klimawandel. Traces of the history of the Earth in Switzerland Switzerland is a small spot on planet Earth. Its history is certainly older, but only the last 300 [...] Reference WILDI, Walter. Sur les traces de l'histoire de la Terre en Suisse. Berne : Erlebnis-Geologie, 2020, 92 p. Available at: http://archive-ouverte.unige.ch/unige:140171 Disclaimer: layout of this document may differ from the published version. 1 / 1 Traces of the history of the Earth in Switzerland A geological journey through time and Switzerland from tropical rainforests, salt deserts and the warm Alpine Sea to the formation of the Alps, the arctic cold and today's climate change Walter Wildi Section des sciences de la Terre et de l’environnement, Université de Genève Rue des Maraîchers 13, CH-1205 Genève https://www.erlebnis-geologie.ch/ 1 Fossil turtle, Glarner Dachschiefer (roof slates) from the former Engi mine (Lower Oligocene, Canton Glarus; Copyright: Dr.
    [Show full text]
  • Quartärvereinigung E
    Vol. 56 Eiszeitalter und Gegenwart Eiszeitalter und Gegenwart No. 1/2 2007 Quaternary Science Journal E & G Published for the Deutsche Quartärvereinigung e. V. Contents Vol. 56 No. 1/2 (2007) Quaternary Science Journal Vorwort...............................................................................................................................1 56 Number 1/2 Volume Preface T. Litt Das Quartär als chronostratigraphische Einheit.................................................................3 The Quaternary as a chronostratigraphical unit T. Litt Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes............7 Stratigraphical Terms for the Quaternary of the North German Glaciation Area T. Litt, K.-E. Behre, K.-D. Meyer, H.-J. Stephan & S. Wansa Stratigraphische Begriffe für das Quartär des süddeutschen Alpenvorlandes.................66 Stratigraphical terms for the Quaternary of the south German Alpine Foreland K.A. Habbe, unter Mitarbeit von D. Ellwanger & R. Becker-Haumann · Eiszeitalter und Gegenwart 2007 Stratigraphische Begriffe für das Quartär des Periglazialraums in Deutschland.............84 Stratigraphical Terms for the Quaternary of the Periglacial Area in Germany B. Urban Biostratigraphische Begriffe aus der Säugetierpaläontologie für das Pliozän und..........96 Pleistozän Deutschlands Biostratigraphical Terms from Mammal Palaentology for the Pliocene and Pleistocene in Germany W. von Koenigswald & W.-D. Heinrich Special issue: Literaturverzeichnis........................................................................................................116
    [Show full text]
  • Middle and Late Quaternary Evolution of Spitsbergen Against Global Changes
    POLISH POLAR RESEARCH 14 3 221-241 1993 Leszek LINDNER and Leszek MARKS Institute of Geology Warsaw University Żwirki i Wigury 93 02-089 Warszawa, POLAND Middle and Late Quaternary evolution of Spitsbergen against global changes ABSTRACT: Attempt of correlation of raised marine beaches and glacial episodes in West Spitsbergen is presented for the Middle and the Late Quaternary. A model of predominating Ba­ rents Sea shelf ice sheet during the Saalian and of co-existing distinct local ice domes during the Vistulian is postulated on the basis of varying land uplift. Glacial episodes in Spitsbergen are re­ ferred to the ones in continental Europe and North America. Rough prognosis of climatic trends is introduced. Key words: Arctic, Spitsbergen, Quaternary stratigraphy, glacioisostatic rebound. Introduction Studies of the Quaternary evolution of Spitsbergen have been based commonly on relation of glacial sediments to raised marine beaches. The former document cooler intervals that resulted in glacier advances in Spitsbergen. The latter repre­ sent mainly climatic warmings whereas incorporated organic remains could be radiocarbon-dated (among others Blake 1961, Lindner, Marks and Pękala 1986, Forman 1990). The paper presents chronostratigraphical correlation of warmings and coolings in Spitsbergen, and therefore - evolution of this area during the Middle and the Late Quaternary. Such reconstruction is based on morphometric and age relations of raised marine beaches and glacial deposits. Thermolumine- scence datings of marine and glacial sediments (Butrym et al. 1987, Lindner and Marks 1991) as well as amino-acid (Miller 1982, Miller et al. 1989) and radio­ carbon (Blake 1961, Birkenmajer and Olsson 1970, Pewe et al.
    [Show full text]
  • VEGETATION and MARINE ECOSYSTEM CHANGE Early Pleistocene in the Netherlands
    VEGETATION AND MARINE ECOSYSTEM CHANGE Early Pleistocene in the Netherlands Lisanne Jeannette Krom University of Utrecht, in cooperation with TNO Vegetation and Marine ecosystem change during the Early Pleistocene in the Netherlands Lisanne Jeanette Krom 4250419 In partial fulfilment of the degree of Master of Science in the Earth Science Department of Physical Geography Utrecht University Supervisors: Dr. Timme Donders Dr. Alexander Houben August 3, 2020 Image on the front page is an Osmunda spore, found multiple times in the Petten BH-1 core 1 I declare that: 1. This is an original report, which is entirely my own work, 2. where I have made use of the ideas of other writers, I have acknowledged the source in all instances, 3. where I have used any diagram or visuals, I have acknowledged the source in all instances, 4. this report has not and will not be submitted elsewhere for academic assessment in any other academic course. Student data: Name: Lisanne Jeanette Krom Registration number: 4250419 Date: August 3, 2020 Signature: 2 Preface and Acknowledgements This thesis about vegetation and marine ecosystem change during the Early Pleistocene in the Netherlands has been written as part of the Master Science degree in Earth Science, programme Marine Science, at Utrecht University. The research was performed under the supervision of Dr. Timme Donders and Dr. Alexander Houben. The aim of the thesis is to reconstruct paleo- environmental changes and to observe the alternation of the terrestrial and marine environment during the Early Pleistocene. The BH-1 core, recovered in Petten (Noord-Holland), is used to make reconstruction of the environment with the use of pollen and dinoflagellate cysts.
    [Show full text]