SEQS2014 Abstracts Ekaterinb
Total Page:16
File Type:pdf, Size:1020Kb
InternatIonal UnIon for QUaternary research (InQUa) sectIon on eUropean QUaternary stratIgraphy (seQs) InstItUte of plant & anImal ecology Ural Branch of the rUssIan academy of scIences (IPAE) Ural federal UnIversIty named after the fIrst presIdent of rUssIa B. n. yeltsIn InstItUte of natUral scIences THE QUATERNARY OF THE URALS: global trends and Pan-European Quaternary records International conference INQUA-SEQS 2014 Ekaterinburg, Russia September 10–16, 2014 ekaterInBUrg UrfU 2014 Международный союз по изучению четвертичного периода секция европейской четвертичной стратиграфии институт экологии растений и животных уро РАН уральский федеральный университет иМени первого президента россии Б. н. ельцина институт естественных наук ЧЕТВЕРТИЧНЫЙ ПЕРИОД УРАЛА: глобальные тенденции и их отражение в общеевропейской четвертичной летописи Материалы международной конференции INQUA-SEQS Екатеринбург, Россия, 10–16 сентября 2014 года eкатеринБург урФУ 2014 Publication is supported by INQUA, RFBR (grant 14-05-20211 г) and the Program for enhancing the global competitiveness of UrFU (grant 6.1.3.5.b-14). Editorial Board: A. V. BORODIN, E. A. MARKOva, T. V. STRUKOva The Quaternary of the Urals: global trends and Pan-European Quaternary records : International conference INQUA-SEQS 2014 (Ekaterinburg, Russia, September 10–16, 2014). – Ekaterinburg, 2014. – 228 p. ISBN The book presents the proceedings of the International Conference INQUA-SEQS 2014 held in Ekaterinburg, Russia. Reports concern a wide spectrum of issues connected to the study of the Quaternary Epoch (2.6 Ma) in Europe and Asia. Based on the results of local and regional Quaternary studies the authors focus on Quaternary stratigraphy and correlations across the Ural region and Europe and discuss the integration of pan- European and pan-Eurasian stratigraphical frameworks. The special attention is given to palaeontological, palaeoclimatological and palaeoenvironmental issues from the Quaternary of Europe and Asia. Materials are published with the maximal preservation of the authors’ text. ISBN 978-5-321-02398-3 © Ural Federal University, 2014 © Institute of Plant and Animal Ecology UrB RAS, 2014 УДК "624/627"(470.5)=111(06) ББК 63.3(235.55)я431+81.2АнглЯ431 Ч52 Материалы конференции изданы при финансовой поддержке INQUA, РФФИ (грант 14-05-20211 г) и программы повышения конкурентоспособности УрФУ (грант 6.1.3.5.b-14). Рецензенты: С. Л. Вотяков, академик РАН, доктор геолого-минералогических наук, директор Института геологии и геохимии УрО РАН; С. А. Шавнин, доктор биологических наук, профессор, директор Ботанического сада УрО РАН Редакционная коллегия: А. В. Бородин, доктор Биологических наук, зав. лаБораторией филогенетики и Биохронологии иэриж уро РАН, профессор кафедры экологии иен урФУ; Е. А. Маркова, кандидат Биологических наук, старший научный сотрудник лаБоратории филогенетики и Биохронологии иэриж уро РАН; Т. В. Струкова, кандидат Биологических наук, ученый секретарь иэриж уро РАН Четвертичный период Урала: глобальные тенденции и их отражение Ч52 в общеевропейской четвертичной летописи : материалы международной конференции INQUA-SEQS (Екатеринбург, Россия, 10–16 сентября 2014 г.). – Екатеринбург : УрФУ, 2014. – 228 с. ISBN 978-5-321-02398-3 В книге представлены материалы международной конференции INQUA- SEQS 2014, проводившейся в Екатеринбурге (Россия). Сообщения касаются широкого спектра вопросов, связанных с исследованиями четвертичного периода (2,6 млн лет) в Европе и Азии. На основании результатов локальных и региональных исследований авторы рассматривают проблемы стратиграфии и корреляции четвертичных отложений Уральского региона и Европы и обсуждают вопросы интеграции общеевропейских и евразийских стратиграфических схем. Особое внимание уделено вопросам палеонтологии, палеоклимата и палеосреды четвертичного периода Европы и Азии. Библиографические ссылки в статьях оформлены в соответствии с ISO 690:2010. УДК "624/627"(470.5)=111(06) ББК 63.3(235.55)я431+81.2АнглЯ431 Ответственность за содержание предоставленных материалов несут авторы статей. ISBN 978-5-321-02398-3 © Уральский федеральный университет, 2014 © Институт экологии растений и животных УрО РАН, 2014 УДК 556.3.01(1-925.11/.16)(282.256.14) L. AgAfonov Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences Ekaterinburg, Russia E-mail: [email protected] THE OB RIVER DISCHARGE FOR THE LAST 300 YEARS: RECONSTRUCTION FROM TREE RINGS Key words: climate change, hydrological cycle, streamflow, Ob River, West Siberia Much attention has been paid to research on river runoff in the context of global climate change (SWIPA, 2011). Such attention is deserved because river runoff is an important component of hydrological cycle, a main constituent of the climate system. Terrestrial water-cycle processes regulating evaporation, runoff and changes in the hydrological cycle are directly linked with atmospheric processes (Chahine, 1992; Rawlins, 2010; Shiklomanov et al., 2011). Changes in the terrestrial hydrologic budget of the Northern Hemisphere influence the freshwater inflow to the Arctic Ocean (Peterson et al., 2002, 2006; McClelland et al., 2004; Mauritzen, 2012). Annual river discharge is the dominant part (38 %) of freshwater input to the Arctic Ocean (Serreze et al., 2006), and the export of river freshwater to the Arctic Ocean is about 11 % of the global river discharge (Shiklomanov, 2000). The Ob River is one of the world’s greatest rivers. Its basin (2.9x10 6 km2) is the fourth largest over the world and is about the size of Western Europe. Estimates of annual discharge from the Ob Basin range from 400 km 3 to 429 km3 and it is to 12 % or more of the annual freshwater inflow to the Arctic Ocean. Approximately 70 % of annual discharge occurs in the ice- free period from May to October, and 80 % of the annual runoff originates southward of 61º N (1152 km from the Ob estuary). Ob River discharge has the highest autocorrelation coefficient (r = 0.38) for discharge in the Northern Hemisphere for a one-year lag and there is a reliable quasi-periodicity of many- year variations in runoff (Simonov, Khristoforov, 2005). The Ob catchment basin can therefore provide great insight into global scale perturbations to the climate system. We developed tree-ring width chronologies (larch and Siberian stone pine) for the 9 test sites (285 trees in total) along the Lower Ob River valley (64º49’ N – 66º06’ N). Response of tree-ring chronologies to hydro-climatic conditions were analyzed using program SEASCORR (Meko et al., 2011) to identify the seasonal hydrological and climatic signals in an annual tree-ring time series for 1936–2009. Modern interaction between the Ob discharge and air temperature over the Ob floodplain was used for understanding hydro- climatic conditions as a background. © Agafonov L., 2014 5 Fig. 1. Reconstruction of the Ob River discharge (1) for the period from August of previous year to July of current year and actual discharge records (2) for Salekhard gauge (287 km from the Ob River estuary). Bold line is 11-years smoothing filter for the reconstructed data Using tree-ring chronologies we reconstructed the Ob River discharge for period from previous August to current July (that is nearly the same as hydrological year) for the last 300 years (Fig. 1). Developed reconstruction of the Ob River discharge has good correlation (r = 0.67, p < 0.05) with records from gage of “Salekhard” for 1936–1996. Our approach and results demonstrate the high potential of tree-ring chronologies to reconstruct river discharge in this region and allow interpreting hydro-climatic interactions over the Ob catchment basin. This study was supported by Russian Foundation for Basic Researches, grant № 13–04–01964. REFERENCES Chahine M. T. 1992. The hydrological cycle and its influence on climate. Nature. Vol. 359. P. 374–380. Mauritzen C. 2012. Arctic freshwater. Nature Geoscince. Vol. 5. 163–165. doi:10.1038/ngeo1409 McClelland J. W., Holmes R. M., Peterson B. J., Stieglitz M. 2004. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. of Geophysical Research. V.109. D18102, doi:10.1029/2004JD004583. Meko D. M., Touchan R., Anchukaitis K. J. Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Computers & Geosciences. 2011. Vol. 37. P. 1234–1241. Peterson B. J., Holmes R. M., McClelland J. W., Vörösmarty C. J., Lammers R. B., Shiklomanov A. I., Shiklomanov I. A., Rahmstorf S. 2002. Increase river discharge to the Arctic Ocean. Science. Vol. 298. P. 2171–2173. Peterson B. J., McClelland J. W., Curry R. Holmes R. M., Walsh J. E, Aagaard K. 2006. Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science. Vol. 313. P. 1061–1066. Rawlins M. A., Steele M., Holland M. M. et al. 2010. Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. J. of Climate. V. 23. P. 5715–5737. Serreze, M. C., Walsh, J. E., Chapin III, F. S., Ostercamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., Barry R.G. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change. Vol. 46. P. 159–207. 6 Simonov Yu. A., Khristoforov A.V. 2005. Analysis of Many-Year Variations in River Runoff into the Arctic Ocean. Water Resources. Vol. 32: 6, 587–593. DOI: 10.1007/s11268–005–0076–2 Shiklomanov I. A. 2000. Appraisal and Assessment of World Water Resources. Water Int. Vol. 25, 1:11–32.