People and Things

Total Page:16

File Type:pdf, Size:1020Kb

People and Things People and things In March, Jiro Kondo (centre), President of the Science Council of Japan, visited CERN, where he was shown the muon spectrometer of the new Chorus neutrino experiment by Klaus Winter (left) and Shigeki Aoki of Kobe. (Photo CERN HI22.3.93) would then overlap. The snake team decided to study overlapping depolarizing resonances by building a 25 kV radiofrequency solenoid magnet to create an depo­ larizing resonance in the Indiana Cooler Ring. This new resonance was then forced to overlap with the nearby imperfection depolarizing resonance by varying the solenoid's frequency. The experimenters found a sharp destructive interference between the two overlapping resonances; while this still cannot be calculated theoretically, such effects are well known in physics. Fortu­ nately the Siberian snake was powerful enough to overcome com­ pletely both overlapping resonances and all their interference effects, keeping the beam fully polarized. On people tU IIUUIC7CÏI ClsDLI /JO/I/O dl (U / UsJ ClkJlUiy The potency of these serpents is to communicate the joy and excite­ being closely followed at accelerator CERN Director General Carlo ment of science to a diversity of laboratories around the world. Rubbia, together with François Gros, audiences. ' Meanwhile, Krisch and his col­ Director of the Institut Pasteur in Recent American Institute of Physics leagues assembled the SPIN Col­ Paris, and distinguished Belgian awards included the Compton Award laboration to encourage the use of chemist llya Prigogine, will advise Siberian snakes at TeV accelerators. to Victor Weisskopf, doyen of the European Commissioner for Re­ world particle physics community, This Collaboration (Michigan/Indiana/ search and Educational Policies Fermilab/North Carolina/IHEP- recognizing his leadership through­ Antonio Ruberti on new directions for Protvino/J IN R-Dubna/Moscow/I N R- out the world in advancing science, European Community research Troitsk/KEK/Kyoto) contains about 40 promoting peace and seeking solu­ policy. Carlo Rubbia's special con­ accelerator experts, 40 spin experi­ tions to world problems'. The citation cern will be the internationalization of menters and one theorist. The underlined his roles as CERN Direc­ research and the development of SSC's 20 TeV lattices could include tor General from 1961-65 and as major world-scale projects. more than 50 empty straight sec­ founder of the US High Energy tions, typically 20 metres long, for Physics Advisory Panel (HEPAP) as subsequent installation of many well as his contributions as teacher Siberian snakes. US awards and author. In the 1930s, Weisskopf worked with Schrôdinger, For Fermilab, SPIN produced a Heisenberg, Bohr and Paul! before 146-page report - Accelerating Prominent astrophysicist David N. Polarized Protons to 150 GeV in the Schramm of Chicago has been moving to the US in 1937. Fermilab Main Injector- and has just awarded the 1993 Julius Edgar started work for a similar report on Lilienfeld Prize of the American The American Institute of Physics the possibilities for accelerating and Physical Society. As well as recog­ Science Writing Prize has gone to storing polarized protons in the nizing contributions to physics, the author and science historian David Tevatron Collider. prize is awarded for skills in present­ Cassidy for his book 'Uncertainty, ing science. Schramm's citation The Life And Science of Werner reads Tor his manifold contributions Heisenberg' (W.H. Freeman, 1991). 22 CERN Courier, May 1993 ; 4 ' ' *'mmÉ&mm 00 g> CO ft ÉHBFT oo ±1 LO ^ ._ 00 W £ x O <° CO 5 is • Eg W CD CO 9- (/) I- 29a Circle advertisement number on reader service form Rear panel of one of the four concially arranged TRD wire chambers This project was commissioned by the University of Bonn, designed and completely produced together with the University and installed at DESY Hamburg. All components were produced by the glass fibre compression process, the outer surfaces were copperplated and the components were bonded and machined so that they were ready to install. Stesalit AG 1) The superimposed detail in the top Kunststoffwerk picture shows a complicated construction in conjunction with CH-4234 Zullwil SO high precision. Telephone 41.61.791 06 01 Fax 41.61.791 06 04 24b Circle advertisement number on reader service form CERN Courier, May 1993 23 Aleph laugh. Successive spokesmen of the Aleph experiment at CERN's LEP electron- positron collider enjoy a joke - original spokesman Jack Steinberger (centre), his successor Jacques Lefrançois (left) and newly appointed Lorenzo Foa (right). Aleph notable Sau-Lan Wu also saw the joke. External correspondents Argonne National Laboratory, (USA) D. Ayres Brookhaven, National Laboratory, (USA) P. Yamin CEBAF Laboratory, (USA) S. Corneliussen Cornell University, (USA) D. G. Cassel DESY Laboratory, (Germany) P. Waloschek Fermi National Accelerator Laboratory, (USA) J. Cooper, J. Holt GSI Darmstadt, (Germany) G. Siegert INFN, (Italy) A. Pascolini Retirements Polykarp Kusch 1911-93 IHEP, Beijing, (China) Qi Nading Earlier this year Bill Kirk retired from Polykarp Kusch, best known for his JINR Dubna, (USSR) SLAC after 37 years. Starting as measurement of the electron mag­ B. Starchenko KEK National Laboratory, (Japan) assistant to Edward Gintzon in 1956, netic moment, for which he shared S. Iwata he went on to serve unobtrusively but the 1955 Nobel Physics Prize with Lawrence Berkeley Laboratory, (USA) with total dedication in a number of Willis Lamb, died on 20 March, aged B. Feinberg key roles. The prose of the 1957 82. After starting his teaching career Los Alamos National Laboratory, (USA) proposal for the two-mile linear in 1936, he was diverted into wartime C. Hoffmann accelerator was largely his work. research. In 1946 he joined Colum­ Novosibirsk, Institute, (USSR) In 1974 he launched Beam Line, bia, where he was twice Physics V. Balakin SLAC s commendable in-house Chairman and was voted the Great Orsay Laboratory, (France) journal, and went on to take charge Teacher Award by students in 1959. Anne-Marie Lutz of all SLAC's information activities. A PSI Laboratory, (Switzerland) R. Frosch keen sportsman, he helped organize the Laboratory's strong tradition of Rutherford Appleton Laboratory, (UK) Jacky Hutchinson participator sport. Physics teaching Saclay Laboratory, (France) Elisabeth Locci IHEP, Serpukhov, (USSR) Machine specialist Donatus Dégèle In several regions of the world, there Yu. Ryabov has retired from DESY after 32 is increasing awareness of the Stanford Linear Accelerator Center, (USA) years. After valuable contributions to importance of physics teaching. For M. Riordan the building and operation of the its part, the European Physical Superconducting Super Collider, (USA) DORIS and PETRA storage rings, he Society has set up a Forum on N. V. Baggett played a leading role in the design Education', under the joint chairman­ TRIUMF Laboratory, (Canada) and construction of proton facilities ship of particle physicists G. Tibell M. K. Craddock for the HERA electron-proton collider. (Uppsala) and G. Marx (Budapest). 24 CERN Courier, May 1993 Wideband PWM Op Amp' Delivers 49kW For particle beam steering & focus with 5mA/°C stability—or deflection and scanning with 9V/us slew rate. Units parallel for higher power output. Model Continuous Output1 220, 230 ±75V @ +12A +150V @ ±10A 231, 261 +160V @ +55A ±330V @ +25A 233.263 +160V@±110A +330V @ +50A 234-1,264-1 ±160V@±180A ' +330V @ +90A 234.264 ±160V@+240A ±330V @ ±120A 235.265 +160V@+300A ±330V @+150A Model * Rating for IPEAK is >2x ICONT depending on duty factor and pulse width. 264 Copley Controls' wideband, Spécifications include DC-4 kHz Copley filtered PWM power amplifiers bandwidth*, 0.2% THD, and look—-to the load^like linear 0.5mV/°C stability. Low heat Controls amplifiers. The 80 kHz switch­ dissipation yields >94% effi­ ing frequency enables power ciency. Applications include iCorp. filters to be built into the beam steering, motion control, 410 University Avenue amplifier's case. MOSFET vibration suppression, magnetic Westwood, MA 02090 output bridge permits parallel­ lévitation, and ripple/harmonic ing for high current. Copley neutralization. Improved cur­ TEL (617) 329-8200 • FAX (617) 329-4055 amplifiers are ideal for driving rent mode DC stability can be Company Contact: Melvin A. Berger a wide range of inductive loads. achieved with external shunt. 9 Circle advertisement number on reader service form KAPTON Insulation for super-conductors at cryogenic temperatures Main Superconducting Coil The remarkable properties of KAPTON The new KAPTON CI System has been Polyimide Film from Du Pont make it specifically developed as insulation for the ideal insulation material at super-conductors in cryogenic cryogenic temperatures. Excellent per­ applications. KAPTON CI offers formance characteristics at extremes of resistance to radiation, creep, cold flow temperature and unique physical and and cut-through. It is now commercially dielectric properties have made available in both customised film KAPTON the material of choice in thickness and adhesive coatings. engineering design for over 25 years. To find out more about KAPTON CI please call or write. ® Du Pont's registered trademark KAPTON Solving engineering problems at every level. Du Pont Imaging Systems, KAPTON High Performance Films, 2, chemin du Pavillon, CH-1218 Le Grand Saconnex, Geneva - Tel (022) 717 5533 - Fax (022) 717 6152 43 Circle advertisement number on reader service form CERN Courier, May 1993 25 DSP Solutions for VMEbus Powered Crates Further to all our CERN approved CERN-Spec Crates NIM-, CAMAC-, FAST BUS-, VMEbus 422/430 Wes-Crates supplies other Crates based on our Systems Some of this Crates are shown here: VMEbus-Crates 6u height, 7 slot with cooling. Insert modules for disk/ drive. Backplane: Jl, J2 (like Spec V-422) orJl, J2 and JAUX (like Spec V-430) Contrl./monitoring like SpecV-425. Interchangeable system to our CERN-Spec power supplies for CERN- Spec Crates V-422 / v-430 *WfïMIWlllIfll^~ VMEbus-Crates 11 u height, 21 slot for VME * ,4f!!lfcN4iiltUVt modules 366,7 mm height, Hardware 340/400/460 mm depth.
Recommended publications
  • Muon Bundles As a Sign of Strangelets from the Universe
    Draft version October 19, 2018 Typeset using LATEX default style in AASTeX61 MUON BUNDLES AS A SIGN OF STRANGELETS FROM THE UNIVERSE P. Kankiewicz,1 M. Rybczynski,´ 1 Z. W lodarczyk,1 and G. Wilk2 1Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland 2National Centre for Nuclear Research, Department of Fundamental Research, 00-681 Warsaw, Poland Submitted to ApJ ABSTRACT Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project). Originally it was argued that they apparently stem from the primary cosmic rays with a heavy masses. We propose an alternative possibility arguing that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe. We also address the possibility of additionally deducing their directionality which could be of astrophysical interest. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. Keywords: astroparticle physics: cosmic rays: reference systems arXiv:1612.04749v2 [hep-ph] 17 Mar 2017 Corresponding author: M. Rybczy´nski [email protected], [email protected], [email protected], [email protected] 2 Kankiewicz et al. 1. INTRODUCTION Cosmic ray physics is our unique source of information on events in the energy range which will never be accessible in Earth-bound experiments Dar & De Rujula(2008); Letessier-Selvon & Stanev(2011). This is why one of the most important aspects of their investigation is the understanding of the primary cosmic ray (CR) flux and its composition.
    [Show full text]
  • Trigger and Data Acquisition
    Trigger and data acquisition N. Ellis CERN, Geneva, Switzerland Abstract The lectures address some of the issues of triggering and data acquisition in large high-energy physics experiments. Emphasis is placed on hadron-collider experiments that present a particularly challenging environment for event se- lection and data collection. However, the lectures also explain how T/DAQ systems have evolved over the years to meet new challenges. Some examples are given from early experience with LHC T/DAQ systems during the 2008 single-beam operations. 1 Introduction These lectures concentrate on experiments at high-energy particle colliders, especially the general- purpose experiments at the Large Hadron Collider (LHC) [1]. These experiments represent a very chal- lenging case that illustrates well the problems that have to be addressed in state-of-the-art high-energy physics (HEP) trigger and data-acquisition (T/DAQ) systems. This is also the area in which the author is working (on the trigger for the ATLAS experiment at LHC) and so is the example that he knows best. However, the lectures start with a more general discussion, building up to some examples from LEP [2] that had complementary challenges to those of the LHC. The LEP examples are a good reference point to see how HEP T/DAQ systems have evolved in the last few years. Students at this school come from various backgrounds — phenomenology, experimental data analysis in running experiments, and preparing for future experiments (including working on T/DAQ systems in some cases). These lectures try to strike a balance between making the presentation accessi- ble to all, and going into some details for those already familiar with T/DAQ systems.
    [Show full text]
  • A BOINC-Based Volunteer Computing Infrastructure for Physics Studies At
    Open Eng. 2017; 7:379–393 Research article Javier Barranco, Yunhai Cai, David Cameron, Matthew Crouch, Riccardo De Maria, Laurence Field, Massimo Giovannozzi*, Pascal Hermes, Nils Høimyr, Dobrin Kaltchev, Nikos Karastathis, Cinzia Luzzi, Ewen Maclean, Eric McIntosh, Alessio Mereghetti, James Molson, Yuri Nosochkov, Tatiana Pieloni, Ivan D. Reid, Lenny Rivkin, Ben Segal, Kyrre Sjobak, Peter Skands, Claudia Tambasco, Frederik Van der Veken, and Igor Zacharov LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN https://doi.org/10.1515/eng-2017-0042 Received October 6, 2017; accepted November 28, 2017 1 Introduction Abstract: The LHC@Home BOINC project has provided This paper addresses the use of volunteer computing at computing capacity for numerical simulations to re- CERN, and its integration with Grid infrastructure and ap- searchers at CERN since 2004, and has since 2011 been plications in High Energy Physics (HEP). The motivation expanded with a wider range of applications. The tradi- for bringing LHC computing under the Berkeley Open In- tional CERN accelerator physics simulation code SixTrack frastructure for Network Computing (BOINC) [1] is that enjoys continuing volunteers support, and thanks to vir- available computing resources at CERN and in the HEP tualisation a number of applications from the LHC ex- community are not sucient to cover the needs for nu- periment collaborations and particle theory groups have merical simulation capacity. Today, active BOINC projects joined the consolidated LHC@Home BOINC project. This together harness about 7.5 Petaops of computing power, paper addresses the challenges related to traditional and covering a wide range of physical application, and also virtualized applications in the BOINC environment, and particle physics communities can benet from these re- how volunteer computing has been integrated into the sources of donated simulation capacity.
    [Show full text]
  • Cosmic-Ray Studies with Experimental Apparatus at LHC
    S S symmetry Article Cosmic-Ray Studies with Experimental Apparatus at LHC Emma González Hernández 1, Juan Carlos Arteaga 2, Arturo Fernández Tellez 1 and Mario Rodríguez-Cahuantzi 1,* 1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Edif. EMA3-231, Ciudad Universitaria, 72570 Puebla, Mexico; [email protected] (E.G.H.); [email protected] (A.F.T.) 2 Instituto de Física y Matemáticas, Universidad Michoacana, 58040 Morelia, Mexico; [email protected] * Correspondence: [email protected] Received: 11 September 2020; Accepted: 2 October 2020; Published: 15 October 2020 Abstract: The study of cosmic rays with underground accelerator experiments started with the LEP detectors at CERN. ALEPH, DELPHI and L3 studied some properties of atmospheric muons such as their multiplicity and momentum. In recent years, an extension and improvement of such studies has been carried out by ALICE and CMS experiments. Along with the LHC high luminosity program some experimental setups have been proposed to increase the potential discovery of LHC. An example is the MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles detector (MATHUSLA) designed for searching of Ultra Stable Neutral Particles, predicted by extensions of the Standard Model such as supersymmetric models, which is planned to be a surface detector placed 100 meters above ATLAS or CMS experiments. Hence, MATHUSLA can be suitable as a cosmic ray detector. In this manuscript the main results regarding cosmic ray studies with LHC experimental underground apparatus are summarized. The potential of future MATHUSLA proposal is also discussed. Keywords: cosmic ray physics at CERN; atmospheric muons; trigger detectors; muon bundles 1.
    [Show full text]
  • The Cell Geometry Is Adapted to the Manufacturing Process. One Side Of
    R&D for the Future 443 The cell geometry is adapted to the manufacturing process. One side of the cell carries all the features required for the RF, whereas the other side is flat for bonding (Fig. 12.11). The cells are diamond machined, joined by diffusion bonding under hydrogen at about 1000°C and vacuum baked at 650°C. With exacting machining tolerances, typically in the 1 µm range, the tuning of the final structure is avoided. A number of test facilities is in operation worldwide including those at CERN which houses the only facility modelling the two-beam scheme in addition to a number of test stands powered by klystrons for high turn-around of testing structure variants. Nominal accelerating gradients of 100 MV/m have been achieved in the accelerating structures under development in a worldwide collaboration with the required low break-down rate while the PETSs have been tested at the nominal output power of 150 MW. However, more variants of these two structures have to be built and examined to address HOM damping, lifetime, breakdown statistics, industrial-scale fabrication, and better understanding of the break-down mechanisms. The Next Energy Frontier e+e− Collider: Innovation in Detectors Lucie Linssen Throughout the history of particle physics, both protons and electrons, with their respective antiparticles, have been used extensively for high energy colliders [Box 4.1]. The merits and difficulties of physics research with high luminosity proton–proton colliders are briefly described in the Box 8.3. Electrons, in contrast to protons, are genuine elementary particles. Apart from initial-state radiation and beamstrahlung effects (see below), they provide very good knowledge of the initial state of the collision.
    [Show full text]
  • Learning Physics from ALEPH Events
    Learning Physics from ALEPH Events This document is an adaptation of the Web pages created by Joe Rothberg and Henri Videau at CERN. These pages can be found at http://aleph.web.cern.ch/aleph/educ/Welcome.html. Last updated: PTD, 5/Oct/2007 1 Introduction The aim of the following project is to provide some means for you to improve your knowledge of particle physics by studying some real data recently collected in the ALEPH experiment. To make it possible we provide some description of the experiment, of its detector and of some physics topics. It will help greatly if you have a copy of a recent particle physics text book to help you with any new concepts. A suggested text is “Introduction to High Energy Physics” by D.H.Perkins. You will need to access the world wide web throughout this project. Various URL’s (internet addresses) will be provided where you can find additional information on specific points. It is highly recommended that you take advantage of this extra information. You will also need access to your Windows account on the lab PC’s, so make sure you have your username validated in advance for this. 2 The Project The project is intended to require three days (21 hours) of study and work, with an additional 6 hours to write up. 1. On day one you should read the sections on “The LEP Collider”, “The ALEPH Exper- iment” and on “Starting with PAW”. After these sections are understood, there are a set of questions to be answered and the answers are to be included in your final report.
    [Show full text]
  • Studies of Jet Energy Corrections at the CMS Experiment and Their Automation
    Master’s thesis Theoretical and Computational Methods Studies of jet energy corrections at the CMS experiment and their automation Adelina Lintuluoto February 2021 Supervisor: Asst. prof. Mikko Voutilainen Advisor: Dr. Clemens Lange Examiners: Asst. prof. Mikko Voutilainen Dr. Kati Lassila-Perini UNIVERSITY OF HELSINKI DEPARTMENT OF PHYSICS PB 64 (Gustaf Hällströms gata 2a) 00014 Helsingfors universitet Tiedekunta – Fakultet – Faculty Koulutusohjelma – Utbildningsprogram – Degree programme Faculty of Science Master’s programme Opintosuunta – Studieinrikting – Study track Theoretical and computational methods Tekijä – Författare – Author Adelina Lintuluoto Työn nimi – Arbetets titel – Title Studies of jet energy corrections at the CMS experiment and their automation Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis February 2021 69 Tiivistelmä – Referat – Abstract At the Compact Muon Solenoid (CMS) experiment at CERN (European Organization for Nuclear Research), the building blocks of the Universe are investigated by analysing the observed final-state particles resulting from high-energy proton-proton collisions. However, direct detection of final-state quarks and gluons is not possible due to a phenomenon known as colour confinement. Instead, event properties with a close correspondence with their distributions are studied. These event properties are known as jets. Jets are central to particle physics analysis and our understanding of them, and hence of our Universe, is dependent upon our ability to accurately measure their energy. Unfortunately, current detector technology is imprecise, necessitating downstream correction of measurement discrepancies. To achieve this, the CMS experiment employs a sequential multi-step jet calibration process. The process is performed several times per year, and more often during periods of data collection.
    [Show full text]
  • Nov/Dec 2020
    CERNNovember/December 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition ADVANCING Welcome to the digital edition of the November/December 2020 issue of CERN Courier. CAVITY Superconducting radio-frequency (SRF) cavities drive accelerators around the world, TECHNOLOGY transferring energy efficiently from high-power radio waves to beams of charged particles. Behind the march to higher SRF-cavity performance is the TESLA Technology Neutrinos for peace Collaboration (p35), which was established in 1990 to advance technology for a linear Feebly interacting particles electron–positron collider. Though the linear collider envisaged by TESLA is yet ALICE’s dark side to be built (p9), its cavity technology is already established at the European X-Ray Free-Electron Laser at DESY (a cavity string for which graces the cover of this edition) and is being applied at similar broad-user-base facilities in the US and China. Accelerator technology developed for fundamental physics also continues to impact the medical arena. Normal-conducting RF technology developed for the proposed Compact Linear Collider at CERN is now being applied to a first-of-a-kind “FLASH-therapy” facility that uses electrons to destroy deep-seated tumours (p7), while proton beams are being used for novel non-invasive treatments of cardiac arrhythmias (p49). Meanwhile, GANIL’s innovative new SPIRAL2 linac will advance a wide range of applications in nuclear physics (p39). Detector technology also continues to offer unpredictable benefits – a powerful example being the potential for detectors developed to search for sterile neutrinos to replace increasingly outmoded traditional approaches to nuclear nonproliferation (p30).
    [Show full text]
  • LHC@Home: a BOINC-Based Volunteer Computing
    Open Eng. 2017; 7:378–392 Research article Javier Barranco, Yunhai Cai, David Cameron, Matthew Crouch, Riccardo De Maria, Laurence Field, Massimo Giovannozzi*, Pascal Hermes, Nils Høimyr, Dobrin Kaltchev, Nikos Karastathis, Cinzia Luzzi, Ewen Maclean, Eric McIntosh, Alessio Mereghetti, James Molson, Yuri Nosochkov, Tatiana Pieloni, Ivan D. Reid, Lenny Rivkin, Ben Segal, Kyrre Sjobak, Peter Skands, Claudia Tambasco, Frederik Van der Veken, and Igor Zacharov LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN https://doi.org/10.1515/eng-2017-0042 Received October 6, 2017; accepted November 28, 2017 1 Introduction Abstract: The LHC@Home BOINC project has provided This paper addresses the use of volunteer computing at computing capacity for numerical simulations to re- CERN, and its integration with Grid infrastructure and ap- searchers at CERN since 2004, and has since 2011 been plications in High Energy Physics (HEP). The motivation expanded with a wider range of applications. The tradi- for bringing LHC computing under the Berkeley Open In- tional CERN accelerator physics simulation code SixTrack frastructure for Network Computing (BOINC) [1] is that enjoys continuing volunteers support, and thanks to vir- available computing resources at CERN and in the HEP tualisation a number of applications from the LHC ex- community are not sucient to cover the needs for nu- periment collaborations and particle theory groups have merical simulation capacity. Today, active BOINC projects joined the consolidated LHC@Home BOINC project. This together harness about 7.5 Petaops of computing power, paper addresses the challenges related to traditional and covering a wide range of physical application, and also virtualized applications in the BOINC environment, and particle physics communities can benet from these re- how volunteer computing has been integrated into the sources of donated simulation capacity.
    [Show full text]
  • CERN Courier Sep/Oct 2019
    CERNSeptember/October 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the September/October 2019 issue of CERN Courier. During the final decade of the 20th century, the Large Electron Positron collider (LEP) took a scalpel to the subatomic world. Its four experiments – ALEPH, DELPHI, L3 and OPAL – turned high-energy particle physics into a precision science, firmly establishing the existence of electroweak radiative corrections and constraining key Standard Model parameters. One of LEP’s most important legacies is more mundane: the 26.7 km-circumference tunnel that it bequeathed to the LHC. Today at CERN, 30 years after LEP’s first results, heavy machinery is once again carving out rock in the name of fundamental research. This month’s cover image captures major civil-engineering works that have been taking place at points 1 and 5 (ATLAS and CMS) of the LHC for the past year to create the additional tunnels, shafts and service halls required for the high-luminosity LHC. Particle physics doesn’t need new tunnels very often, and proposals for a 100 km circular collider to follow the LHC have attracted the interest of civil engineers around the world. The geological, environmental and civil-engineering studies undertaken during the past five years as part of CERN’s Future Circular Collider study, in addition to similar studies for a possible Compact Linear Collider up to 50 km long, demonstrate the state of the art in tunnel design and construction methods. Also in this issue: a record field for an advanced niobium-tin accelerator dipole magnet; tensions in the Hubble constant; reports on EPS-HEP and other conferences; the ProtonMail success story; strengthening theoretical physics in DIGGING southeastern Europe; and much more.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Alain BLONDEL Born 26 march1953 in Neuilly (92000 FRANCE), French citizen Personal address: 590 rte d'Ornex, 01280 Prévessin, France. Tel. +33 (0)4 50 40 46 51 Prefessional address: Université de Genève Département de Physique Nucléaire et Corpusculaire Quai Ernest-Ansermet 24 CH-1205 Genève 4 Tel. [41](22) 379 6227 [email protected] University grades and prizes : Engineer Ecole Polytechnique Paris (X1972) DEA in Nuclear Physics, University of Orsay (1975) 3d cycle Thesis, University of Orsay (1976) PhD in physics University of Orsay (1979) Bronze Medal CNRS (1979) (given yearly to the best PhD thesis in Particle/Nuclear physics) Prize of the Thibaud Foundation, Académie des Sciences, Arts et Belles Lettres de Lyon (1991) Silver Medal CNRS (1995) (given yearly for the best achievement in the field) Paul Langevin Prize from the French Academy of Sciences (1996) Manne Siegbahn Medal from the Royal Academy of Science in Sweden (1997) Prize from the foundation Jean Ricard by the French Physical Society (2004) (given yearly for best achievement in Physics) Professional curriculum : 1975 Stagiaire Ecole Polytechnique (Palaiseau, France) (PhD student grant) 1977 Attaché de Recherche au CNRS (Permanent position as junior researcher) 1980 Chargé de Recherche au CNRS (Permanent position as senior researcher) 1983-1985 Boursier CERN (CERN fellow) 1985-1989 Membre du Personnel CERN (CERN staff) 1989 → Directeur de Recherches au CNRS (Director of research group) 1991 → 2000 Maître de Conférences à l'Ecole Polytechnique (Junior professor) 1995 Attaché scientifique CERN (CERN scientific associate) 2000 Professeur ordinaire à l'Université de Genève (Full professor) Scientific activities • Began research in 1974 in the Gargamelle neutrino experiment with the study of background to the Neutral Current search.
    [Show full text]
  • Four Decades of Computing in Subnuclear Physics – from Bubble Chamber to Lhca
    Four Decades of Computing in Subnuclear Physics – from Bubble Chamber to LHCa Jürgen Knobloch/CERN February 11, 2013 Abstract This manuscript addresses selected aspects of computing for the reconstruction and simulation of particle interactions in subnuclear physics. Based on personal experience with experiments at DESY and at CERN, I cover the evolution of computing hardware and software from the era of track chambers where interactions were recorded on photographic film up to the LHC experiments with their multi-million electronic channels. Introduction Since 1968, when I had the privilege to start contributing to experimental subnuclear physics, technology has evolved at a spectacular pace. Not only in experimental physics but also in most other areas of technology such as communication, entertainment and photography the world has changed from analogue systems to digital electronics. Until the invention of the multi-wire proportional chamber (MWPC) by Georges Charpak in 1968, tracks in particle detectors such as cloud chambers, bubble chambers, spark chambers, and streamer chambers were mostly recorded on photographic film. In many cases more than one camera was used to allow for stereoscopic reconstruction in space and the detectors were placed in a magnetic field to measure the charge and momentum of the particles. With the advent of digital computers, points of the tracks on film in the different views were measured, digitized and fed to software for geometrical reconstruction of the particle trajectories in space. This was followed by a kinematical analysis providing the hypothesis (or the probabilities of several possible hypotheses) of particle type assignment and thereby completely reconstructing the observed physics process.
    [Show full text]