“Regional Environmental Profile of Asia”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Slash and Burn' Farmers Is Deforesting Mainland Southeast Asia
How Blaming ‘Slash and Burn’ Farmers is Deforesting Mainland Southeast Asia JEFFERSON M. FOX AsiaPacific ISSUES Analysis from the East-West Center SUMMARY For decades, international lenders, agencies, and foundations No. 47 December 2000 as well as national and local governments have spent millions of dollars trying The U.S. Congress established the East-West Center in 1960 to to “modernize” the traditional practices of farmers in many mountainous foster mutual understanding and cooperation among the govern- areas of Southeast Asia—an agenda driven by the belief that their age-old ments and peoples of the Asia Pacific region, including the United shifting cultivation practices (known pejoratively as “slash and burn”) are States. Funding for the Center comes from the U.S. government deforesting Asia. But a new look at how forests fare under shifting cultivation with additional support provided by private agencies, individuals, (as opposed to under permanent agriculture) clearly demonstrates that efforts corporations, and Asian and Pacific governments. to eliminate the ancient practice have actually contributed to deforestation, The AsiaPacific Issues series 1 contributes to the Center’s role as loss of biodiversity, and reduction in carbon storage. In fact, shifting cultiva- a neutral forum for discussion of issues of regional concern. The tion, rather than being the hobgoblin of tropical forest conservation, may be views expressed are those of the author and not necessarily those ecologically appropriate, culturally suitable, and under certain circumstances of the Center. the best means for preserving biodiversity in the region. The real threat to these tropical forests is posed by the steady advance of large-scale permanent and commercial agriculture. -
Forest Destruction in Tropical Asia
SPECIAL SECTION: ASIAN BIODIVERSITY CRISES Forest destruction in tropical Asia William F. Laurance Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Panama, USA natural products and lands on which traditional Asian cul- I evaluate trends in forest loss, population size, eco- 8 nomic growth, and corruption within 12 nations that tures rely . contain the large bulk of Asian tropical forests, and Here I evaluate trends in deforestation in the tropical contrast these with trends occurring elsewhere in the Asian region, focusing on closed-canopy forests. I compare tropics. Half of the Asian nations have already experi- surviving forest cover and rates of forest loss among the enced severe (>70%) forest loss, and forest-rich countries, major forested countries in the region, and contrast these such as Indonesia and Malaysia, are experiencing rapid trends with those in other tropical nations in the Americas forest destruction. Both expanding human populations and Equatorial Africa. I also assess the potential influence and industrial drivers of deforestation, such as logging of some demographic and economic variables on Asian and exotic-tree plantations, are important drivers of tropical forests, and highlight some important threats to forest loss. Countries with rapid population growth these forests and their biota. and little surviving forest are also plagued by endemic corruption and low average living standards. Datasets Keywords: Asian tropical forests, biodiversity, defores- tation, logging, population growth. I evaluated changes in forest cover and potentially related demographic and economic variables for 12 countries FOR biologists, the forests of tropical Asia are, by nearly (Bangladesh, Cambodia, India, Indonesia, Laos, Malay- any measure, among the highest of all global conservation sia, Myanmar, the Philippines, Papua New Guinea, Sri priorities. -
The Fall and Rise Again of Plantations in Tropical Asia: History Repeated?
Land 2014, 3, 574-597; doi:10.3390/land3030574 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Review The Fall and Rise Again of Plantations in Tropical Asia: History Repeated? Derek Byerlee 3938 Georgetown Ct NW, Washington, DC 20007, USA; E-Mail: [email protected]; Tel.: +1-202-492-2544 Received: 21 January 2014; in revised form: 18 June 2014 / Accepted: 23 June 2014 / Published: 30 June 2014 Abstract: The type of agrarian structure employed to produce tropical commodities affects many dimensions of land use, such as ownership inequality, overlapping land rights and conflicts, and land use changes. I conduct a literature review of historical changes in agrarian structures of commodities grown on the upland frontier of mainland Southeast and South Asia, using a case study approach, of tea, rubber, oil palm and cassava. Although the production of all these commodities was initiated in the colonial period on large plantations, over the course of the 20th century, most transited to smallholder systems. Two groups of factors are posited to explain this evolution. First, economic fundamentals related to processing methods and pioneering costs and risks sometimes favored large-scale plantations. Second, policy biases and development paradigms often strongly favored plantations and discriminated against smallholders in the colonial states, especially provision of cheap land and labor. However, beginning after World War I and accelerating after independence, the factors that propped up plantations changed so that by the end of the 20th century, smallholders overwhelmingly dominated perennial crop exports, except possibly oil palm. Surprisingly, in the 21st century there has been a resurgence of investments in plantation agriculture in the frontier countries of Cambodia, Laos and Myanmar, driven by very similar factors to a century ago, especially access to cheap land combined with high commodity prices. -
Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific Comments External Review First Order Draft - Chapter 3
Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific Comments external review first order draft - Chapter 3 Reviewer Name Chapter From Page From Line To Page To Line Comment Response (start) (start) (end) (end) Cameron Colebatch general The documents are good summaries, but what are the implications of the documents? What are the authors Thank you for the suggestion. An Executive seeking policy makers to do with them? Summary has been added to the chapter during the revision, and a separate SPM has Suggest that (at the least) a dot point summary of the 'Recommendations and policy options' be provided at been made. We tried this for the IPCC Asia the beginning of each chapter to make this more prominent. If appropriate, it may also be worth preparing a chapter but got very little extra input for a 'summary for policy makers' (SPM) for each document as well. huge amount of extra effort. LI Qingfeng general 1, The Report in overall is too academia, too detailed in scientific exploration and descriptions. In Thank you for the comment. However, like the consideration of the principal aim “to facilitate the implementation of the National … and the “Inter- IPCC reports, the IPBES output is targeted at governmental” nature of the organization, the Report has to be more “publicly explicit”, rather than governments, not the public. We hope to have “scientifically complicated”. If the Report is to be read by the policy makers, and to draw attentions from the made it more readable, as the FOD stage was public, the content is to be simplified and the volume greatly reduced, one third is more than enough. -
The Role of Rice in Southeast Asia
RESOURCES ESSAYS THE ROLE OF RICE IN SOUTHEAST ASIA By Eric Crystal and Peter Whittlesey Planting Rice with a Smile, Laos, 2000. Photo by Peter Whittlesey his essay will explore the significance of rice in traditional It is thought that rice was first domesticated in northern South- Asian culture. Examples will be drawn primarily from east Asia or southwestern China some 8,000 years ago. Oftentimes T Southeast Asia, a region of the world where the majority of we forget that during the three-million-year term of modern man the population continues to reside in agricultural villages. The pace (homo sapiens), fewer than l2,000 years have been spent in settled of social change has accelerated markedly throughout Asia in recent communities. Only until relatively recent proto-historical times have decades. Urbanization has been increasing and off-farm employment most humans abandoned hunting and gathering in favor of settled opportunities have been expanding. The explosive growth of educa- farming. The agricultural revolution that transformed human soci- tional access, transportation networks, and communication facilities eties from bands of wide-ranging animal hunters and vegetable gath- has transformed the lives of urban dweller and rural farmers alike. erers into settled peasants is thought to have occurred in just a few Despite the evident social, political, and economic changes in Asia in places on earth. Wheat was domesticated in Mesopotamia, corn was recent decades, the centrality of rice to daily life remains largely domesticated in Central America, and rice was domesticated in Asia. unchanged. In most farming villages rice is not only the principal sta- When the ancestors of the present day Polynesian inhabitants of ple, but is the focus of much labor and daily activity. -
Long–Range Transport of Soil Dust and Smoke Pollution in the South Asian
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector AtmosphericPollutionResearch2(2011)151Ͳ157 Atmospheric Pollution Research www.atmospolres.com Long–rangetransportofsoildustandsmokepollutionintheSouth Asianregion BilkisA.Begum1,SwapanK.Biswas1,GauriG.Pandit2,I.VijayaSaradhi2,ShahidaWaheed3, NailaSiddique3,M.C.ShiraniSeneviratne4,DavidD.Cohen5,AndreasMarkwitz6,PhilipK.Hopke7 1BangladeshAtomicEnergyCommission(BAEC),AtomicEnergyCentre,Dhaka(AECD),P.O.Box:164,Dhaka, Bangladesh 2BhabaAtomicEnergyCentre,Trombay,Mumbai,400085,India 3ChemistryDivision,DirectorateofScience,PakistanInstituteofNuclearScienceandTechnology(PINSTECH),P.O.Nilore,Islamabad,45650Pakistan 4AtomicEnergyAuthority,60/460,BaselineRoad,Orugodawatta,Wellampitiya,SriLanka 5AustralianNuclearScienceandTechnologyOrganisation(ANSTO)LockedBag2001,KirraweeDC,NSW,Australia 6GNSScience,30GracefieldRoad,P.O.Box31Ͳ312,LowerHutt,NewZealand 7CentreforAirResourcesEngineeringandScience,DepartmentofChemicalandBiomolecularEngineering,ClarksonUniversity,Potsdam,NY136999Ͳ 5708,UnitedStates ABSTRACT TransboundarytransportofairpollutionintheSouthAsianregionhasbeenanissueofincreasingimportanceoverthe Keywords: pastseveraldecades.Long–rangetransportofanthropogenicpollutioniscontrastedwiththatofpollutionproduced Airborneparticulatematter by natural processes such as dust storms or natural forest fires. Airborne particulate matter datasets covering the LongͲrangetransport periodfrom2002to2007fromtheneighboringcountrieslikeBangladesh,India,PakistanandSriLankawereusedto -
Estimating Global Cropland Production from 1961 to 2010
Estimating global cropland production from 1961 to 2010 Pengfei Han1*, Ning Zeng1,2*, Fang Zhao2,3, Xiaohui Lin4 1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 2Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA 3Potsdam Institute for Climate Impact Research, Potsdam, Brandenburg 14473, Germany 4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China Correspondence to: Ning Zeng ([email protected]); Pengfei Han ([email protected]) 1 1 Abstract. Global cropland net primary production (NPP) has tripled over the last fifty 2 years, contributing 17-45 % to the increase of global atmospheric CO2 seasonal 3 amplitude. Although many regional-scale comparisons have been made between 4 statistical data and modelling results, long-term national comparisons across global 5 croplands are scarce due to the lack of detailed spatial-temporal management data. 6 Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 7 using a process-based model called VEGAS and compared the results with Food and 8 Agriculture Organization of the United Nations (FAO) statistical data on both 9 continental and country scales. According to the FAO data, the global cropland NPP 10 was 1.3, 1.8, 2.2, 2.6, 3.0 and 3.6 PgC yr-1 in the 1960s, 1970s, 1980s, 1990s, 2000s 11 and 2010s, respectively. -
Unseen Poisons in Asia
UNSEEN POISONS IN ASIA A review of persistent organic pollutant levels in South and Southeast Asia and Oceania UNSEEN POISONS IN ASIA A review of persistent organic pollutant levels in South and Southeast Asia and Oceania Authors: Michelle Allsopp Paul Johnston Greenpeace Research Laboratories Department of Biological Sciences University of Exeter Prince of Wales Road Exeter EX4 4PS UK www.greenpeace.org ISBN: 90-73361-64-8 This report is printed on 100% recycled processed chlorine-free paper M a r c h 2 0 0 0 UNSEEN POISONS IN ASIA CONTENTS Summary 2 1. INTRODUCTION 9 1.1 The Chemicals of Concern 10 2. GLOBAL POLLUTION AND TRANSPORT OF POPS 13 2.1 Fate of POPs in Tropical Ecosystems 14 2.2 Time Trends of POPs Levels in the Global Environment 15 3. POPS IN SOUTHEAST ASIA AND OCEANIA 17 3.1 POPs in the Marine Environment 17 3.1.1 Air and Seawater 17 3.1.2 Marine Mammals 23 3.1.3 Marine Fish 27 3.2 POPs in the Terrestrial Environment 34 3.2.1 Soil 34 3.2.2 Air 37 3.2.3 Surface Waters 39 3.2.4 River and Estuarine Sediments 46 3.2.5 Humans 48 References 53 1 SUMMARY Persistent organic pollutants (POPs) are a group of chemicals which are very resistant to natural breakdown processes and are therefore extremely stable and long-lived. POPs are not only persistent in the environment but many are also highly toxic and build up (bioaccumulate) in the tissues of animals and humans. Most do not occur in nature but are synthetic chemicals released as a result of anthropogenic activities. -
Influenza Update N° 380
Influenza Update N° 380 09 November 2020, based on data up to 25 October 2020 Information in this report is categorized by influenza transmission zones, which are geographical groups of countries, areas or territories with similar influenza transmission patterns. For more information on influenza transmission zones, see: https://www.who.int/influenza/surveillance_monitoring/updates/Influenza_Transmission_Zones20180914.pdf Summary ▪ The current influenza surveillance data should be interpreted with caution as the ongoing COVID-19 pandemic have influenced to varying extents health seeking behaviours, staffing/routines in sentinel sites, as well as testing priorities and capacities in Member States. The various hygiene and physical distancing measures implemented by Member States to reduce SARS-CoV-2 virus transmission have likely played a role in reducing influenza virus transmission. ▪ Globally, despite continued or even increased testing for influenza in some countries, influenza activity remained at lower levels than expected for this time of the year. ▪ In the temperate zone of the northern hemisphere, influenza activity remained below inter- seasonal levels, though sporadic influenza detections were reported in some countries. ▪ In the temperate zones of the southern hemisphere, no influenza detections were reported across countries. ▪ In the Caribbean and Central American countries, sporadic influenza detections were reported. Severe acute respiratory infection (SARI) activity, likely due to COVID-19, decreased in most reporting countries. Influenza update | 09 November 2020 1 ▪ In tropical South America, there were no influenza detections across reporting countries. ▪ In tropical Africa, influenza activity was reported in West Africa in Côte d’Ivoire and Niger, and in East Africa in Kenya. ▪ In Southern Asia, influenza activity of predominately influenza A(H3N2) was reported in Bangladesh and India in recent weeks. -
The Floristic Characteristics of the Tropical Rainforest in Xishuangbanna
CHINESE GEOGRAPHICAL SCIENCE Volume 4, Number 2, pp.174-- 185, 1994 Science Press, Beijing,China THE FLORISTIC CHARACTERISTICS OF THE TROPICAL RAINFOREST IN XISHUANGBANNA Zhu Hua(~ ~) ( Xishuangbanna Tropical Botanical Garden, the ChineseAcademy of Sciences, Mengla 666303, PRC) ABSTRACT: The general floristic characteristics of the tropical rainforest of Xishuanghauna have been summarized in the present paper. The tropical rainforest is estimated to consist of more than 3,000 species of seed plant pertaining to more than 1,000 genera and about 180 families. Based on the comprehensive analysis of the distri- bution of taxa in two representative communities of the rainforest, the deduction is giv- en as follows: the families, genera and species of tropical distribution take up about 80%, 94% and more than 90% of the total of the flora separately in which the genera of tropical Asia take up 33%-42% of the total and the species of tropical Asia take up about 74% of the total. The flora is explicitly of tropics in nature and as a part of tropi- cal Asian flora. Occurring at the montane habitats of northern margin of tropical SE Asia, the flora also embodies conspicuous characters of marginal tropics. Xishuangbanna is geographically a transitional area from true tropics to subtropics and an ecotone where the floristic element of Indo-Malaysia from south, the one of S Asia or S Himalayas from west, the one of Indochina-S China from southeast and the one of S China from northeast meet and overlap in their areal boundaries each other. The flora is therefore enclosed with the characteristics offloristic ecotone. -
Soil Erosion by Water in the Tropics
630 US ISSN 0271-9916 December 1982 RESEARCH EXTENSION SERrES 024 Soil Erosion by Water in the Tropics S. A. EI-Swaify, E. W. Dangler, and C. L. Armstrong HITAHR • COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES • UNIVERSITY OF HAWAII BEST AVAILABLE COpy SOIL EROSION BY WATER IN THE TROPICS S. A. EI-Swaify, E. W. Dangler, and C. L. Armstrong Department ofAgronomy and Soil Science College ofTropical Agriculture and Human Resources University ofHawaii Honolulu, Hawaii BESTAVAILABLE COpy CONTENTS Illustrations vii Tables ix Acknowledgments xi Abbreviations xiii Synopsis and Recommendations xv 1. Introduction 1 Forms ofwater erosion 1 Tolerance limits 3 Special considerations for the tropics 6 2. Extent ofWater Erosion in the Tropics 9 Approaches, methods, and scales ofassessment 9 Rainfall erosion in the tropics-general trends 12 Inventory ofrainfall erosion in the tropics 13 Tropical Africa 14 Tropical Asia 31 Tropical Australia, Papua New Guinea, and Pacific Islands 44 Tropical South America 45 Central America 53 Caribbean Islands 55 Changes in the extent oferosion 58 3. Impact of Rainfall Erosion in the Tropics 60 Impact on soil productivity 60 Flood hazards 69 Sedimentation and usefulness ofreservoirs and waterways 72 Other environmental impacts .: 74 4. Predictability Parameters for Rainfall Erosion in the Tropics 75 Conditions favoring high rates ofsoil loss 75 Quantitative parameters for prediction 76 Prevailing land-use patterns and farming systems 108 5. Erosion Control Measures 119 Traditional systems 121 Developed systems 121 Vegetative control methods 124 Mechanical control methods 134 6. Priority Needs for Problem Solving 146 Information dissemination 146 Research needs ............................................................ 146 Extension, advisory, and information delivery services 149 Training needs 149 Literature Cited 150 Index 169 About the Authors 173 v ILLUSTRATIONS MAPS 1. -
Assessment Reports on Emerging Ecological Issues in Central Asia
ASSESSMENT REPORTS ON EMERGING ECOLOGICAL ISSUES IN CENTRAL ASIA Ashgabat Foreword In December 2006, five Central Asian countries established the Environment Convention as an important initiative for regional co- operation among the member states on sustainable development. The implementation of the Convention requires regular assessment of the state of the environment with a focus on emerging environ- mental issues. The United Nations Environment Programme (UNEP) is mandated to regularly assess and monitor major environmental challenges and trends. The rapid socio-economic growth coupled with increase in intensity and frequency of natural disasters have brought many challenging emerging issues to the forefront. The emerging environmental issues are a threat to food security, water security, energy security and sustainable development. This assessment report on the emerging environmental issues in Central Asia is timely and meaningful to the Central Asian region. The report, the first of its kind in Central Asia, identifies key emerging en- vironmental issues in Central Asia – Atmospheric Brown Cloud, Dust Storms, Glacial Melt, Integrated Chemical Management and the Use of Alternative Energy Resources. These issues have been ana- lyzed based on sound science by various experts, including scientists, academics and civil society representatives, to determine their impact on environment and population. Based on the analysis the report identifies the gaps in the existing system to address the emerging environmental issues and provide clear recommendations to fill the gaps. I believe that this report will bring emerging environmental issues to the attention of different stake- holders including the general public. This report will also provide a sound basis for decision makers in Central Asian countries in addressing the emerging environmental issues at the policy level.