An Ancient Tropical Origin, Dispersals Via Land Bridges and Miocene Diversification Explain the Subcosmopolitan Disjunctions Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Slash and Burn' Farmers Is Deforesting Mainland Southeast Asia
How Blaming ‘Slash and Burn’ Farmers is Deforesting Mainland Southeast Asia JEFFERSON M. FOX AsiaPacific ISSUES Analysis from the East-West Center SUMMARY For decades, international lenders, agencies, and foundations No. 47 December 2000 as well as national and local governments have spent millions of dollars trying The U.S. Congress established the East-West Center in 1960 to to “modernize” the traditional practices of farmers in many mountainous foster mutual understanding and cooperation among the govern- areas of Southeast Asia—an agenda driven by the belief that their age-old ments and peoples of the Asia Pacific region, including the United shifting cultivation practices (known pejoratively as “slash and burn”) are States. Funding for the Center comes from the U.S. government deforesting Asia. But a new look at how forests fare under shifting cultivation with additional support provided by private agencies, individuals, (as opposed to under permanent agriculture) clearly demonstrates that efforts corporations, and Asian and Pacific governments. to eliminate the ancient practice have actually contributed to deforestation, The AsiaPacific Issues series 1 contributes to the Center’s role as loss of biodiversity, and reduction in carbon storage. In fact, shifting cultiva- a neutral forum for discussion of issues of regional concern. The tion, rather than being the hobgoblin of tropical forest conservation, may be views expressed are those of the author and not necessarily those ecologically appropriate, culturally suitable, and under certain circumstances of the Center. the best means for preserving biodiversity in the region. The real threat to these tropical forests is posed by the steady advance of large-scale permanent and commercial agriculture. -
Lejeuneaceae, Marchantiophyta)
Polish Botanical Journal 61(2): 205–229, 2016 e-ISSN 2084-4352 DOI: 10.1515/pbj-2016-0031 ISSN 1641-8190 CONTRIBUTION TO THE BRYOFLORA OF AUSTRALIA. VI. THE GENUS COLOLEJEUNEA (SPRUCE) STEPH. (LEJEUNEACEAE, MARCHANTIOPHYTA) Tamás Pócs Abstract. Thirty-eight species of the genus Cololejeunea (Spruce) Steph. (Lejeuneaceae, Marchantiophyta) are reported for the whole of Australia, more than doubling the number of taxa known since the first account of the Australian members of the genus. Cololejeunea cairnsiana Pócs, Cololejeunea heinari Pócs and Cololejeunea floccosa var. fraseriana Pócs are described as new to science. The records of Cololejeunea diaphana A. Evans, Cololejeunea gottschei (Steph.) Mizut., Cololejeunea longifolia (Mitt.) Benedix ex Mizut. Cololejeunea verrucosa Steph. and Cololejeunea floccosa(Lehm. & Lindenb.) Steph. var. amoenoides Tixier are new for the continent. Cololejeunea amoena Benedix is treated as a variety of Cololejeunea floccosa. Cololejeunea tortifolia Steph. is synonymized with Cololejeunea microscopica (Taylor) Schiffn. and is excluded from the Australian flora. The name Cololejeunea cambodiana Tixier is validated. A key for the Australian taxa and an analysis of their distribution follow the enumeration of species. Key words: Australia, Cololejeunea, distribution, epiphylls, liverworts, new species, taxonomy Tamás Pócs, Institute of Biology, Eszterházy Károly University Eger, Pf. 43, H-3301, Hungary; e-mail: [email protected] Introduction The first detailed account of the Australian rep- tory Program, during which I was accompanied resentatives of the genus Cololejeunea (Spruce) by local bryologists, among them Heinar Strei- Steph. was given by Thiers (1988), including mann, Andy Cairns, Elizabeth A. Brown, Robert 17 species, one among them new to science. Pócs G. -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
Distribution of Freshwater Midges in Relation to Air Temperature and Lake Depth
J Paleolimnol (2006) 36:295-314 DOl 1O.1007/s10933-006-0014-6 A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth Erin M. Barley' Ian R. Walker' Joshua Kurek, Les C. Cwynar' Rolf W. Mathewes • Konrad Gajewski' Bruce P. Finney Received: 20 July 2005 I Accepted: 5 March 2006/Published online: 26 August 2006 © Springer Science+Business Media B.Y. 2006 Abstract Freshwater midges, consisting of Chiro- organic carbon, lichen woodland vegetation and sur- nomidae, Chaoboridae and Ceratopogonidae, were face area contributed significantly to explaining assessed as a biological proxy for palaeoclimate in midge distribution. Weighted averaging partial least eastern Beringia. The northwest North American squares (WA-PLS) was used to develop midge training set consists of midge assemblages and data inference models for mean July air temperature 2 for 17 environmental variables collected from 145 (R boot = 0.818, RMSEP = 1.46°C), and transformed 2 lakes in Alaska, British Columbia, Yukon, Northwest depth (1n (x+ l); R boot = 0.38, and RMSEP = 0.58). Territories, and the Canadian Arctic Islands. Canon- ical correspondence analyses (CCA) revealed that Key words Chironomidae : Transfer function . mean July air temperature, lake depth, arctic tundra Beringia' Air temperature . Lake depth' Canonical vegetation, alpine tundra vegetation, pH, dissolved correspondence analysis . Paleoclimate E. M. Barley· R. W. Mathewes Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A IS6 Introduction I. R. Walker Departments of Biology, and Earth and Environmental Sciences, University of British Columbia Okanagan, Palaeoecologists seeking to quantify past environ- Kelowna, BC, Canada VIV IV7 mental changes rely increasingly on transfer func- e-mail: [email protected] tions that make use of biological proxies (Battarbee J. -
Post-Glacial Flooding of the Bering Land Bridge Dated to 11 Cal Ka BP Based on New Geophysical and Sediment Records
Clim. Past, 13, 991–1005, 2017 https://doi.org/10.5194/cp-13-991-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records Martin Jakobsson1, Christof Pearce1,2, Thomas M. Cronin3, Jan Backman1, Leif G. Anderson4, Natalia Barrientos1, Göran Björk4, Helen Coxall1, Agatha de Boer1, Larry A. Mayer5, Carl-Magnus Mörth1, Johan Nilsson6, Jayne E. Rattray1, Christian Stranne1,5, Igor Semiletov7,8, and Matt O’Regan1 1Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden 2Department of Geoscience, Aarhus University, 8000 Aarhus, Denmark 3US Geological Survey MS926A, Reston, Virginia 20192, USA 4Department of Marine Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden 5Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, New Hampshire 03824, USA 6Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden 7Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 8Tomsk Polytechnic University, Tomsk, Russia Correspondence to: Martin Jakobsson ([email protected]) Received: 26 January 2017 – Discussion started: 13 February 2017 Accepted: 1 July 2017 – Published: 1 August 2017 Abstract. The Bering Strait connects the Arctic and Pacific Strait and the submergence of the large Bering Land Bridge. oceans and separates the North American and Asian land- Although the precise rates of sea level rise cannot be quanti- masses. The presently shallow ( ∼ 53 m) strait was exposed fied, our new results suggest that the late deglacial sea level during the sea level lowstand of the last glacial period, which rise was rapid and occurred after the end of the Younger permitted human migration across a land bridge today re- Dryas stadial. -
The Archaeology of Beringia
The Archaeology ofBeringia FREDERICK HADLEIGH WEST Columbia University 'Press New York, 1981 ARLIS Alaska Resources Library & Information Services Library Building, Suite 111 .3211 Providence Drive Anchorage, AK 99508·4614 This document is copyrighted material. Alaska Resources Library and Information Services (ARLIS) is providing this excerpt in an attempt to identify and post all documents from the Susitna Hydroelectric Project. This book is identified as APA no. 2316 in the Susitna Hydroelectric Project Document Index (1988), compiled by the Alaska Power Authority. It is unable to be posted online in its entirety. Selected pages are displayed here to identify the published work. The book is available at call number F951.W5 1981 in the ARLIS Susitna collection. Contents Figures Vll Tables IX Preface Xl Acknowledgments XVll Introduction 1 l. Northeastern Siberia and Alaska: The Remnants of Beringia as They Exist Today 5 2. Reconstructing the Environment of Late Pleistocene Beringia 31 3. Archaeology: The Beringians 75 4. Origin and Relationships of the Eastern Branch of the Beringian Tradition 155 5. The Beringian Tradition and the Origin of New World Cultures 183 6. Epilogue: The Beringians and Beyond 211 References 233 Author Index 255 Subject Index 259 Figures Frontispiece Beringia at Wiirm maximum. 1. Climates of northeast Asia and northwest America. 13 2. Vegetation associations, northeast Asia and northwest America. 15 3. Native languages, northeast Asia and northwest America. 30 4. Local vegetational successions in the late Quaternary summarized from pollen studies. 36 5. Generalized regional vegetational successions in western Beringia. 47 6. Summarized vegetation successions at archaeological localities in western Beringia. -
Forest Destruction in Tropical Asia
SPECIAL SECTION: ASIAN BIODIVERSITY CRISES Forest destruction in tropical Asia William F. Laurance Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Panama, USA natural products and lands on which traditional Asian cul- I evaluate trends in forest loss, population size, eco- 8 nomic growth, and corruption within 12 nations that tures rely . contain the large bulk of Asian tropical forests, and Here I evaluate trends in deforestation in the tropical contrast these with trends occurring elsewhere in the Asian region, focusing on closed-canopy forests. I compare tropics. Half of the Asian nations have already experi- surviving forest cover and rates of forest loss among the enced severe (>70%) forest loss, and forest-rich countries, major forested countries in the region, and contrast these such as Indonesia and Malaysia, are experiencing rapid trends with those in other tropical nations in the Americas forest destruction. Both expanding human populations and Equatorial Africa. I also assess the potential influence and industrial drivers of deforestation, such as logging of some demographic and economic variables on Asian and exotic-tree plantations, are important drivers of tropical forests, and highlight some important threats to forest loss. Countries with rapid population growth these forests and their biota. and little surviving forest are also plagued by endemic corruption and low average living standards. Datasets Keywords: Asian tropical forests, biodiversity, defores- tation, logging, population growth. I evaluated changes in forest cover and potentially related demographic and economic variables for 12 countries FOR biologists, the forests of tropical Asia are, by nearly (Bangladesh, Cambodia, India, Indonesia, Laos, Malay- any measure, among the highest of all global conservation sia, Myanmar, the Philippines, Papua New Guinea, Sri priorities. -
Notes on Early Land Plants Today. 67. Notes on Lejeuneaceae Subtribus Cololejeuneinae (Marchantiophyta)
Phytotaxa 202 (1): 063–068 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.202.1.9 Notes on Early Land Plants Today. 67. Notes on Lejeuneaceae subtribus Cololejeuneinae (Marchantiophyta) TAMÁS PÓCS1, RUI-LIANG ZHU2, LARS SÖDERSTRÖM3, ANDERS HAGBORG4 & MATT VON KONRAT4 1Department of Botany, Eszterházy College, pf. 43, H-3301 Eger, Hungary; [email protected] 2Department of Biology, School of Life Sciences, East China Normal University, 3663 Zhong Shan North Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; [email protected] 3Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Science and education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, USA; hagborg@ pobox.com, [email protected] Abstract Cololejeunea subg. Aphanolejeunea is validated. Two new combinations, one validated species name, 14 new synonyms and four new lectotypes in Cololejeunea are proposed. The genus Austrolejeunea is shown to be invalid and all species are transferred to Nephelolejeunea making three new combinations and validating five species names. Introduction During the work with the forthcoming world checklist of liverworts and hornworts (Söderström et al., in press), several necessary taxonomic and nomenclature changes have come to our attention. Here we present necessary changes in Lejeuneaceae subtrib. Cololejeuneinae (sensu Gradstein 2013). In a molecular study Yu et al. (2014) showed the infrageneric structure in the genus Cololejeunea (Spruce 1884: 291) Stephani (1891: 208), but it does not correspond to the morphological structure currently used. -
Lejeunea Srivastavae Sp. Nov. (Marchantiophyta: Lejeuneaceae), from Nilgiri Hills of Western Ghats (India)
Taiwania, 58(1): 7–11, 2013 Lejeunea srivastavae sp. nov. (Marchantiophyta: Lejeuneaceae), from Nilgiri hills of Western Ghats (India) Praveen Kumar Verma(1*) and K. K. Rawat(2) 1. Rain Forest Research Institute, Deovan, Sotai Ali, Post Box # 136, Jorhat – 785 001(Assam), India. 2. National Botanical Research Institute, Rana Pratap Marg, Lucknow – 226 001, Uttar Pradesh, India. Email: [email protected] * Corresponding author. Email: [email protected] (Manuscript received 8 May 2012; accepted 15 September 2012) ABSTRACT: A new species of Lejeunea, L. srivastavae, is described and illustrated as new to science from central part of Nilgiri Mountains of Western Ghats, a global biodiversity Hotspot, India. The species is characterized by large plants size, pale greenish to yellowish green colour, imbricate leaves with large leaf-lobule, contiguous – distant underleaves, 4–5 times as wide as stem and single gynoecial innovation. Details of its morpho-taxonomy, distribution and affinities are provided along with a key to the genus Lejuenea species in Nilgiri hills to distinguish it with other known species of the area. KEY WORDS: Lejeunea srivastavae, Lejeuneaceae, new species, Nilgiri Mountains Western Ghats, India. INTRODUCTION checklists have been published from time to time, but the recent and most important ones are those of Parihar The Nilgiri hills of Tamil Nadu are a part of Nilgiri (1961), Parihar et al. (1994), and Dandotiya et al. Biosphere Reserve, Western Ghats, India, a biodiversity (2011).However, all of them merely gave a compiled list hot spot and hosts a valuable gene pool and veritable of earlier described species of Lejeunea as well other floral diversity. -
Phylogenetic and Morphological Notes on Uleobryum Naganoi Kiguchi Et Ale (Pottiaceae, Musci) 1
HikobiaHikobial4:143-147.2004 14: 143-147.2004 PhylogeneticPhylO窪eneticandmorphOlO=icalmtesⅢIノルCD〃"剛〃昭肌oiKiguchi and morphological notes on Uleobryum naganoi Kiguchi eteraL(POttiaceae,Musci)’ ale (Pottiaceae, Musci) 1 HIROYUKIHIRoYuKISATQHⅡRoMITsuBoTA,ToMIoYAMAGucHIANDHIRoNoRIDEGucH1 SATO, HIROMI TSUBOTA, TOMIO YAMAGUCHI AND HIRONORI DEGUCHI SATO,SATO,H、,TsuBoTA,H、,YAMAGucHI,T、&DEGucHI,H2004Phylogeneticandmor- H., TSUBOTA, H., YAMAGUCHI, T. & DEGUCHI, H. 2004. Phylogenetic and mor phologicalphologicalnotesonU/eo6Mイノ'z〃αgα"ojKiguchietα/、(Pottiaceae,Musci)Hikobia notes on Uleobryum naganoi Kiguchi et al. (Pottiaceae, Musci). Hikobia 14:l4:143-147. 143-147. UleobryumU/eo6/Wm〃αgα"ojKiguchiejα/、,endemictoJapanwithalimitednumberofknown naganoi Kiguchi et aI., endemic to Japan with a limited number of known locations,locations,isnewlyreportedffomShikoku,westernJapanThroughcarefUlexamina- is newly reported from Shikoku, western Japan. Through careful examina tionoffTeshmaterial,rhizoidalmberfbnnationisconfinnedfbrthefirsttime・The , tion of fresh material, rhizoidal tuber formation is confirmed for the first time. The phylogeneticphylogeneticpositionofthiscleistocalpousmossisalsoassessedonthebasisofmaxi- position of this cleistocarpous moss is also assessed on the basis of maxi mummumlikelihoodanalysisof′bcLgenesequences、ThecuITentpositioninthePot- likelihood analysis of rbcL gene sequences. The current position in the Pot tiaceaetiaceaeissUpportedandacloserelationshiptoEpheme'wmslpj""/OS"川ssuggested is supported and a close relationship to -
Archaeology Resources
Archaeology Resources Page Intentionally Left Blank Archaeological Resources Background Archaeological Resources are defined as “any prehistoric or historic district, site, building, structure, or object [including shipwrecks]…Such term includes artifacts, records, and remains which are related to such a district, site, building, structure, or object” (National Historic Preservation Act, Sec. 301 (5) as amended, 16 USC 470w(5)). Archaeological resources are either historic or prehistoric and generally include properties that are 50 years old or older and are any of the following: • Associated with events that have made a significant contribution to the broad patterns of our history • Associated with the lives of persons significant in the past • Embody the distinctive characteristics of a type, period, or method of construction • Represent the work of a master • Possess high artistic values • Present a significant and distinguishable entity whose components may lack individual distinction • Have yielded, or may be likely to yield, information important in history These resources represent the material culture of past generations of a region’s prehistoric and historic inhabitants, and are basic to our understanding of the knowledge, beliefs, art, customs, property systems, and other aspects of the nonmaterial culture. Further, they are subject to National Historic Preservation Act (NHPA) review if they are historic properties, meaning those that are on, or eligible for placement on, the National Register of Historic Places (NRHP). These sites are referred to as historic properties. Section 106 requires agencies to make a reasonable and good faith efforts to identify historic properties. Archaeological resources may be found in the Proposed Project Area both offshore and onshore. -
The Fall and Rise Again of Plantations in Tropical Asia: History Repeated?
Land 2014, 3, 574-597; doi:10.3390/land3030574 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Review The Fall and Rise Again of Plantations in Tropical Asia: History Repeated? Derek Byerlee 3938 Georgetown Ct NW, Washington, DC 20007, USA; E-Mail: [email protected]; Tel.: +1-202-492-2544 Received: 21 January 2014; in revised form: 18 June 2014 / Accepted: 23 June 2014 / Published: 30 June 2014 Abstract: The type of agrarian structure employed to produce tropical commodities affects many dimensions of land use, such as ownership inequality, overlapping land rights and conflicts, and land use changes. I conduct a literature review of historical changes in agrarian structures of commodities grown on the upland frontier of mainland Southeast and South Asia, using a case study approach, of tea, rubber, oil palm and cassava. Although the production of all these commodities was initiated in the colonial period on large plantations, over the course of the 20th century, most transited to smallholder systems. Two groups of factors are posited to explain this evolution. First, economic fundamentals related to processing methods and pioneering costs and risks sometimes favored large-scale plantations. Second, policy biases and development paradigms often strongly favored plantations and discriminated against smallholders in the colonial states, especially provision of cheap land and labor. However, beginning after World War I and accelerating after independence, the factors that propped up plantations changed so that by the end of the 20th century, smallholders overwhelmingly dominated perennial crop exports, except possibly oil palm. Surprisingly, in the 21st century there has been a resurgence of investments in plantation agriculture in the frontier countries of Cambodia, Laos and Myanmar, driven by very similar factors to a century ago, especially access to cheap land combined with high commodity prices.