Plasticiser Effect of Oleic Acid Polyester on Polyethylene and Polypropylene

Total Page:16

File Type:pdf, Size:1020Kb

Plasticiser Effect of Oleic Acid Polyester on Polyethylene and Polypropylene View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Polymer Testing 31 (2012) 1077–1082 Contents lists available at SciVerse ScienceDirect Polymer Testing journal homepage: www.elsevier.com/locate/polytest Material properties Plasticiser effect of oleic acid polyester on polyethylene and polypropylene Marcela Mantese Sander, Aline Nicolau, Rafael Guzatto, Dimitrios Samios* Laboratory of Instrumentation and Molecular Dynamics, Institute of Chemistry, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue 9500, Postal Box 15003, Postal Code 91501-970 Porto Alegre, RS, Brazil article info abstract Article history: The potential application of a polymeric fatty acid derivative as a plasticiser for poly- Received 27 June 2012 ethylene and polypropylene was evaluated through the study of torque during melt pro- Accepted 14 August 2012 cessing, apparent crystallinity, crystalline plane orientation, plane strain compression and thermogravimetric analysis of polymer blends. The polymeric derivative is a polyester Keywords: produced from epoxidised oleic acid, cis-1,2-cyclohexanedicarboxylic anhydride and trie- fi Polyole n plasticiser thylamine as initiator. The results suggested that the oleic acid polymer had a plasticising Oleic acid polyester effect in blends with polyethylene (PE) and polypropylene (PP). Reduction of processing Crystallinity Plane strain compression torque, no loss of crystallinity, maintenance of mechanical properties and an improvement Thermal stability in thermal stability were observed for PP. For PE, a slight reduction of processing torque, crystallinity and mechanical resistance were observed. Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction to their results, ELO improves migration transfer in PVC relative to the problems observed in PVC plasticised with The replacement of phthalates as plasticiser additives in traditional phthalates. the manufacture of plastics is of great importance for In the literature, there are few studies about the use applications such as food packaging, products for children, derivatives of renewable resources as co-processing mate- insect repellents, automotive products, blood storage bags rials for polyolefins. Sastry and co-workers [12] studied the and medical devices because these compounds present application of sunflower oil as a compatibiliser in potential risks to human health and the environment [1,2]. polyethylene-starch blends; they concluded that it acted as Some authors have investigated the suitability of alterna- a plasticiser (improved the film quality) and as a pro- tive plasticisers to replace phthalates [3–7]. Different oxidant (accelerated the film degradation). Other studies epoxidised vegetable oils were tested as plasticisers for regarding the processability and final properties of poly- polyvinyl chloride (PVC) [6–11]. Sun et al. [9] compared ethylene (PE)/vegetable oil derivative blends described epoxidised safflower oil with DEHP (Bis(2-ethylhexyl) their interaction, structure formation and thermal proper- phthalate) as plasticisers for PVC films, studying their ties [13,14]. Reports about blends of polypropylene (PP) resilience, elastic modulus, toughness and glass transition with vegetable oil derivatives showed that there were temperature. Bueno-Ferrer et al. [10] evaluated the interactions between both phases [15], and enhancement performance of epoxidised soybean oil (ESBO) as a plasti- of the PP mechanical properties such as tensile strength, ciser and stabiliser for PVC by means of structural and elongation at break, impact strength and tear strength [16]. thermal studies. Fenollar and co-authors [11] applied However, no evaluations of polymerised epoxy fatty acid epoxidised linseed oil (ELO) as a PVC plasticiser. According esters as co-processing materials for PE and PP have been published. * Corresponding author. Tel.: þ55 5133086290; fax: þ55 5133087304. A series of recent publications reported the synthesis E-mail address: [email protected] (D. Samios). and possible applications of materials derived from 0142-9418/$ – see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.polymertesting.2012.08.006 1078 M.M. Sander et al. / Polymer Testing 31 (2012) 1077–1082 epoxidised oils and biodiesel. Martini et al. [17] investi- The 1H and 13C NMR characterisation, which proves the gated polymers obtained from epoxidised linseed oil bio- epoxidation of oleic acid, was presented elsewhere [19,20]. diesel with different cyclic anhydrides. Reiznautt et al. [18] The OAP was prepared by reacting epoxidised oleic studied polyesters derived from sunflower oil biodiesel. acid (EOA) with cis-1,2-cyclohexanedicarboxylic anhy- Nicolau and co-authors reported the properties of linear dride (CH) and triethylamine (TEA) as the initiator. The polyesters produced from oleic acid and methyl oleate in molar composition of the reaction mixture was 0.5/0.5/ bulk [19] and in solution [20]. Roza and co-workers 0.0085 (EOA/CH/TEA). The mixture was placed in a glass prepared different types of polyesters from epoxidised beaker and heated in an oven at 165 Cfor3h.The soybean oil biodiesel, including biodiesel, as a green products were stored in desiccators at room temperature solvent. The polymerisation process [21] and the physico- [19,20]. chemical properties of the products were evaluated [22]. These materials possess important physicochemical prop- 2.3. Blend mixtures and torque evaluation erties. The olefinic chains of the fatty acids in these poly- mers suggest that it may be possible to apply them in The blends were prepared in a Haake Reomix 600p with blends with PE and PP. It is necessary to evaluate their two co-rotors. The composition of the PE and PP blends is plasticiser effects in this and other important applications. given in Table 1. The polyester was added in the mixing The properties of polyesters produced from epoxidised chamber as an ethyl acetate solution (30% w/v, polyester/ biodiesel depend on the type of vegetable oil used as ethyl acetate). The processing time was 10 min at 40 rpm, a starting material. Vegetable oils are fatty acid triglycer- the applied torque being monitored during this period. The ides that have different degrees of unsaturation. Fatty acids mixture temperature was 160 C for PE blends and 190 C differ in the length of their carbonic chains and the number for PP blends. This procedure guaranteed the evaporation and orientation of their double bonds. For example, linseed of ethyl acetate at the beginning of the process. and sunflower oils contain predominately polyunsaturated The blends were moulded as sheets with a Carver fatty acids; they form crosslinked materials when poly- Monarch model 3710 press, cut into small pieces and merised under optimum cure conditions. However, the injected with a Thermo Scientific Haake Minijet II to polymerisation of oleic acid, a monounsaturated fatty acid, produce the test specimens. The injection temperature was yields linear polyesters. 160 C for PE blends and 210 C for PP. The conditions were The aim of this work is to investigate the plasticiser as follows: injection at 280 bar for 4 s, followed by appli- action of oleic acid polyesters (OAP) in blends with PE and cation of pressure of 500 bar for 8 s and subsequent cooling. PP. The polyester was obtained from the polymerisation of The test specimens were 57 mm long, 12 mm wide and oleic acid, the main fatty acid component of olive and 3.2 mm thick. The PE and PP blend specimens were canola oils, with cis-1,2-cyclohexanedicarboxylic anhy- annealed at 120 C and 150 C, respectively, for 30 min and dride and triethylamine as initiator. cooled to room temperature. 2. Experimental 2.4. Differential scanning calorimetry experiments 2.1. Materials Differential scanning calorimetry (DSC) was used to determine the melting temperature (Tm), heat of fusion Oleic acid P.A., toluene (99.5%) and hydrogen peroxide (Hf) and crystallinity (Xc) of neat PP and PE and their (30% w/w) in water were purchased from Synth (São Paulo, blends with OAP. Approximately 5 mg of sample was Brazil). Triethylamine (99%), cis-1,2-cyclohexanedicarboxylic weighed in an aluminium capsule and analysed in a DSC anhydride (99%), formic acid (85%) and sulphuric acid (98%) 2920 apparatus from TA Instruments. The temperature were purchased from Aldrich Chemical Co. The blends were range was from 30 to 180 C for PE blends and from 30 to prepared with polyethylene HC 7260 and polypropylene H 200 C for PP blends. For both types of blends, the samples 301, both from Braskem S.A (São Paulo, Brazil). were heated at a rate of 10 C/min until the maximum temperature was reached, kept at an isothermal condition 2.2. Epoxidation and polymerisation of oleic acid for 2 min and then cooled to 30 C at a rate of À40 C/min. Then, samples were heated again at a rate of 10 C/min to The epoxidation of oleic acid was performed with for- their respective maximum temperature. This procedure mic acid generated in situ. The molar ratio of hydrogen erased the thermal history of the blends. The data from peroxide/formic acid/unsaturation (double bonds) was both heating cycles and the respective results are shown in 20/2/1. The oleic acid, toluene and concentrated formic acid Section 3.2, Table 2. were placed together in a well-stirred, round-bottom glass reactor kept at room temperature. Then, 30% (w/w) hydrogen peroxide was added dropwise. The reactor Table 1 temperature was raised slowly to 80 C to complete the Blend compositions in percentage (% w/w). reaction. This entire procedure took approximately 2 h. Afterwards, the organic layer (containing the epoxide) was Polymer PE0 PE1 PE3 PE5 PP0 PP1 PP3 PP5 PE 100 99 97 95 –– – – separated and washed with water to remove residual H2O2. PP –– – –100 99 97 95 Anhydrous sodium sulphate was used to dry traces of water OAP 01 3 5 01 3 5 and the epoxide was concentrated in a rotary evaporator. M.M. Sander et al.
Recommended publications
  • II. Plasticizer-Free Polyvinyl Chloride, Plasticizer-Free Copolymers of Vinyl
    This is an unofficial translation. Only the German version is binding. II. Plasticizer-free Polyvinyl Chloride, Plasticizer-free Copolymers of Vinyl Chlo- ride and Mixtures of these Polymers with other Copolymers and Chlorinated Polyolefins Containing Mainly Vinyl Chloride in the Total Mixture As of 01.01.2012 The monomers and other starting substances as well as additives used in the production of plasticizer-free polyvinyl chloride, plasticizer-free copolymers of vinyl chloride containing mainly vinyl chloride, mixtures of these polymers with other copolymers, and chlorinated polyolefins containing mainly vinyl chloride in the total mixture are subject to the requirements of the Commission Regulation (EU) No 10/2011. Otherwise, there are no objections to the use of these plastics for commodities in the sense of § 2, Para. 6, No 1 of the Food and Feed Code (Lebensmittel- und Futtermittelgesetzbuch), pro- vided they are suitable for their intended purpose and comply with the following conditions: 1. The use of monomers and other starting materials for polyethylene is subject to the stipula- tions of the Commission Regulation (EU) No 10/2011. The evaluation presented in the following refers to polymers from the following monomeric starting substances: a) Vinyl chloride b) Vinylidene chloride c) Trans-dichloroethylene d) Vinylesters of aliphatic carbonic acids C2-C18, in so far as covered by the positive list of the Commission Regulation (EU) No 10/2011 e) Esters of acrylic acid, methacrylic acid and/or maleic acid or fumaric acid with
    [Show full text]
  • Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi
    Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi Cite this article as: Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi. Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate[J]. Chinese J. Polym. Sci, 2019, 37(7): 681-686. doi: 10.1007/s10118-019-2251-y View online: https://doi.org/10.1007/s10118-019-2251-y Articles you may be interested in Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite Chinese J. Polym. Sci. 2018, 36(12): 1361 https://doi.org/10.1007/s10118-018-2160-5 SYNTHESIS OF POLYURETHANE MODIFIED BISMALEIMIDE (UBMI) AND POLYURETHANE-IMIDE ELASTOMER Chinese J. Polym. Sci. 2008, 26(1): 117 Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties Chinese J. Polym. Sci. 2019, 37(11): 1119 https://doi.org/10.1007/s10118-019-2268-2 增塑剂对碱木质素/HDPE复合材料性能影响研究 The Effect of Plasticizer on the Properties of Alkali Lignin/HDPE Composites 高分子学报. 2014(2): 210 https://doi.org/10.3724/SP.J.1105.2014.13204 泊肃叶流中环形高分子的迁移行为及与线性高分子的差异 Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers 高分子学报. 2019, 50(11): 1229 https://doi.org/10.11777/j.issn1000-3304.2019.19074 聚醚硅油表面迁移行为对聚苯乙烯表面极性的影响 THE IMPROVEMENT OF POLARITY OF POLYSTYRENE SURFACE BY THE SELECTIVE SURFACE MIGRATION OF POLYETHER SILICOME OIL 高分子学报. 2007(2): 165 Chinese Journal of POLYMER SCIENCE ARTICLE https://doi.org/10.1007/s10118-019-2251-y
    [Show full text]
  • Recent Attempts in the Design of Efficient PVC Plasticizers With
    materials Review Recent Attempts in the Design of Efficient PVC Plasticizers with Reduced Migration Joanna Czogała 1,2,3,* , Ewa Pankalla 2 and Roman Turczyn 1,* 1 Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland 2 Research and Innovation Department, Grupa Azoty Zakłady Azotowe K˛edzierzynS.A., Mostowa 30A, 47-220 K˛edzierzyn-Ko´zle,Poland; [email protected] 3 Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland * Correspondence: [email protected] (J.C.); [email protected] (R.T.) Abstract: This paper reviews the current trends in replacing commonly used plasticizers in poly(vinyl chloride), PVC, formulations by new compounds with reduced migration, leading to the enhance- ment in mechanical properties and better plasticizing efficiency. Novel plasticizers have been divided into three groups depending on the replacement strategy, i.e., total replacement, partial replacement, and internal plasticizers. Chemical and physical properties of PVC formulations containing a wide range of plasticizers have been compared, allowing observance of the improvements in polymer per- formance in comparison to PVC plasticized with conventionally applied bis(2-ethylhexyl) phthalate, di-n-octyl phthalate, bis(2-ethylhexyl) terephthalate and di-n-octyl terephthalate. Among a variety of newly developed plasticizers, we have indicated those presenting excellent migration resistance and advantageous mechanical properties, as well as those derived from natural sources. A separate chapter has been dedicated to the description of a synergistic effect of a mixture of two plasticizers, primary and secondary, that benefits in migration suppression when secondary plasticizer is added to PVC blend.
    [Show full text]
  • Cross Linked Sulphonated Poly(Ether Ether Ketone) for the Development of Polymer Electrolyte Membrane Fuel Cell
    Cross Linked Sulphonated Poly(ether ether ketone) for the Development of Polymer Electrolyte Membrane Fuel Cell Abdul Ghaffar Al Lafi, MSc. A Thesis Submitted for the Degree of Doctor of Philosophy The School of Metallurgy and Materials, The College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, UK. September 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Synopsis Ion irradiation has been investigated as a route for the preparation of mechanically stable and highly durable cross linked sulphonated PEEK for fuel cell application. Ion irradiation was carried out using the University of Birmingham’s Scanditronix MC-40 Cyclotron operating at 11.7 MeV for H+ and 30 MeV for He2+ and the irradiated materials were characterized focusing on structural, thermal, morphological as well as dielectrical properties. Alterations produced in the molecular structure of amorphous PEEK by ion irradiation have been interpreted as due to chain scission and formation of cross links, as confirmed by sol-gel analysis in MSA using the well known Charlesby–Pinner equation. The thermal decomposition of irradiated PEEK was similar to that of untreated PEEK in that it occurred by a random chain scission process.
    [Show full text]
  • High Performance Ester Plasticizers
    High Performance Ester Plasticizers Abstract Traditional elastomer polymers, such as nitrile, polychloroprene, chlorinated polyethylene and chlorosulfonated polyethylene, have for years used moderate- to low- performance ester plasticizers. However, longevity requirements for rubber articles made from these elastomers have created a need for higher-performance ester plasticizers. With the increasing high-temperature demands required by automotive, other elastomers such as acrylic, high-saturated nitrile, epichlorohydrin and ethylene propylene diene monomer EPDM are replacing the more traditional elastomers. Plasticizers commonly used for the traditional and the high-temperature polymers are extractable, incompatible or too volatile. This paper provides information on plasticizers that are designed for traditional elastomers and high-performance polymers. The test data will include heat aging, extraction by hydrocarbons and low-temperature as molded after aging. The information provided indicates that the permanence of the plasticizer after these various agings is the key to the retention of physical properties. Introduction End uses for elastomer compounds are quite diverse, but they can be loosely categorized as being either general performance or higher performance applications. Each of these performance categories requires a different set of considerations in terms of compounding with ester plasticizers. An ester plasticizer, in its simplest concept, is a high-boiling organic solvent that when added to an elastomeric polymer reduces stiffness and permits easier processing.1 For general performance applications, compounders require moderate performance in several areas without particular emphasis on any one. Some general performance ester plasticizers used in the marketplace today are DOA, DIDA, DIDP, DOP, DINP and other phthalates and adipates made from straight-chain alcohols of 7–11 carbons in length.
    [Show full text]
  • Microporous Membranes from Poly\Ether-Etherketone\-Type
    Europa,schesP_ MM M M M M MINI M MM I M I M J European Patent Office a At* w%n © Publication number: 0 492 446 B1 Office europeen, desJ brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 29.11.95 © Int. CI.6: B01 D 71/52, B01D 67/00, C08J 9/26 © Application number: 91121801.4 @ Date of filing: 19.12.91 The file contains technical information submitted after the application was filed and not included in this specification Mlcroporous membranes from poly(ether-etherketone)-type polymers and low melting point crystalllzable polymers, and a process for making the same. ® Priority: 21.12.90 US 633600 California 94526 (US) Inventor: Beck, H. Nelson @ Date of publication of application: 390 La Vista Road 01.07.92 Bulletin 92/27 Walnut Creek, California 94598 (US) © Publication of the grant of the patent: Inventor: Lundgard, Richard A. 29.11.95 Bulletin 95/48 2441 Whltetall Drive Antloch, © Designated Contracting States: California 94509 (US) DE DK FR GB IT NL Inventor: Wan, Hawk S. 4627 Fleldcrest Way © References cited: Antloch, EP-A- 0 297 744 California 94509 (US) EP-A- 0 337 626 Inventor: Kawamoto, Jlro EP-A- 0 409 416 2348 Benham Court EP-A- 0 417 908 Walnut Creek, California 94596 (US) © Proprietor: THE DOW CHEMICAL COMPANY Inventor: Sonnenscheln, Mark F. 2030 Dow Center, 3512 Blythe Drive Abbott Road Antloch, Midland, California 94509 (US) 00 Michigan 48640 (US) CO @ Inventor: Mahoney, Robert D. 240 Daylight Palace Danville, CM Oi Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Biodegradable Polymeric Film for Food Packaging
    RESEARCH ARTICLE Biodegradable Polymeric Film for Food Packaging Raminder Kaur Neelam Yadav* Delhi Technological University Delhi Technological University PREFACE API 2015 ABSTRACT Food packaging films that show post-consumer biodegradability are rarely explored by researchers. The present study was carried out to investigate the physicomechanical characteristics of ethyl cellulose (EC) based films to be used in food packaging. Ethyl cellulose was plasticized with different percentage of polyethylene glycol (PEG). The samples of standard dimensions were subjected to different testing such as soluble matter content, moisture content, oil permeability, surface morphology, mechanical testing etc. The data obtained was analysed to decide the moderate percentage of plasticizer that can be used to provide a rational explanation of a perfect quality specimen. It has been revealed that too high or too low percentage of plasticizer was not appropriate for a good film. Tensile stress analysis was used to estimate the mechanical properties of the films. The results have shown an increase in tensile properties with increase in coalescence temperature. Temperature-dependent plastic deformation was observed for coalescence temperatures above 50oC. KEY WORDS Ethyl cellulose, Plasticizer, Biopolymers, Food packaging. *Raminder Kaur Corresponding Author [email protected] Biodegradable Polymeric Film for Food Packaging 21 INTRODUCTION on protein, lipid and polysaccharide, which provide barrier to the volatile component of food as well as its Packaging protects food from the external envi- moisture content [17,18]. However, the main concern ronment and provides information to the consumers is that, these bio-degradable packaging films lack about the food inside the package. Foods are packaged many desirable characteristics of packaging materials to deliver safe, wholesome and nutritious food to the to be used at a commercial scale.
    [Show full text]
  • A Acrylonitrile-Butadiene-Styrene (ABS) Plastics, 44, 179 Active
    Index A Cationic polymerization Acrylonitrile-butadiene-styrene (ABS) alkene monomer, 286 plastics, 44, 179 carbonyl monomer, 213, 215 Active material, 76 chain transfer reaction, 151, 197 Additive co-initiator, 193 lubricant, 85, 287 commercial applications, 290 odorant, 85 friedel-crafts catalyst, 187 pigment, 85 initiators, 185 plasticizer, 85 kinetic chain length, 198 Anionic copolymerization, 236, 237, 259, 296, kinetics, 283 297 rate constant, 155, 205 Anionic polymerization reaction mechanisms, 191 carbonyl monomer, 213, 215 termination reaction, 162 chain transfer, 45, 197, 276, 280, 283 Cationic polymerization of epoxides initiator, 143, 170, 193, 198, 200, 201, 204, initiation, 277, 278, 280 208, 209, 211, 214, 215, 273 propagation, 278, 279, 280 kinetics, 196, 267 termination and transfer processes, 280 rate constant, 192 Chain copolymerization, 233, 236, reaction mechanisms, 191, 211, 231, 299 297 termination, 162, 188, 199, 200, 201, 203, Chain polymerization 204, 271, 285 free radical, 3, 9, 138, 150 Anionic polymerization of epoxides ionic, 3, 187, 276 chain transfer to monomer, 276 Chemical property degree of polymerization, 2, 171, 197, 198, chemical permeation, 61 274, 284, 285 chemical resistance, 61 exchange reaction, 274 moisture permeation, 62, 63 kinetics, 196, 204 moisture resistance, 62 reaction mechanisms, 191, 201, 211, 231, Chemical structure analysis by 299 chemical reaction method, 90 Arrhenius equation, 47, 169 electron spin resonance, 98 infrared spectroscopy (IR), 90–92 mass spectroscopy of MALDI-TOF MS, B 18, 19 Bond strength, 70 nuclear magnetic resonance spectroscopy (NMR), 95, 96, 98 Raman spectroscopy, 92, 93 C UV-visible spectroscopy, 93 Cardo polymer, 83, 87 Chromophores, 82, 93 Cationic copolymerization, 236, 237, 256–259, Cohesive energy density, 12 296 Commercial copolymers, 263 W.-F.
    [Show full text]
  • Blends of Polyimides with Poly(Ether Ether Ketone) and PEEK Derivatives/ Robert J
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1990 Blends of polyimides with poly(ether ether ketone) and PEEK derivatives/ Robert J. Karcha University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Karcha, Robert J., "Blends of polyimides with poly(ether ether ketone) and PEEK derivatives/" (1990). Doctoral Dissertations 1896 - February 2014. 769. https://scholarworks.umass.edu/dissertations_1/769 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. BLENDS OF POLYIMIDES WITH POLY (ETHER ETHER KETONE) AND PEEK DERIVATIVES A Dissertation Presented by ROBERT J, KARCHA Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 1990 Polymer Science and Engineering Copyright by Robert J. Karcha 1990 All Rights Reserved / BLENDS OF POLYIMIDES WITH POLY (ETHER ETHER KETONE) AND PEEK DERIVATIVES A Dissertation Presented By ROBERT J. KARCHA Approved as to style and content by Roger S C/Porter , Chairman William J. MacXnignt, Memb er C. Peter Li llya, 1^1iiber William J^. MacKnight, department head Polymer Science and Engineering Dedicated to the memory of my uncle and namesake Robert Glasser, whose untimely death prevented the completion of his dissertation. ACKNOWLEDGEMENTS I would like to thank my advisor, Prof. Roger S. Porter, for his support, guidance and encouragement during the course of my work.
    [Show full text]
  • PROCESSING and STRUCTURE G. Menges and N. Berndtsen Institut
    Pure & Appt. Chem.~ Vol. 49, pp. 597-613. Pergamon Press, 1977. Printed in Great Britain. · POLYVINYL CHLORIDE - PROCESSING AND STRUCTURE G. Menges and N. Berndtsen Institut ffir Kunststoffverarbeitung, 51 Aachen Abstract - Widely different procedures for the processing of PVC have proved themselves and have succeeded in practice on the basis of the special physical and chemical properties of PVC. In this connection a distinction must be made between the processing of plasticized PVC and the relatively difficult processing of rigid PVC. A survey of the most important methods of preparation and processing is given here. The special, rather abnormal properties of PVC in comparison with other thermoplastics are partly. a result of its characteristic structure. The consequences for preparation and processing must therefore be considered anew. Of course, the globular structure of PVC has an effect on the behaviour of the solid-state material and the melt, too, so that great importance must be attributed to the processes at the parttele interface. 1. INTRODUCTION Though polyvinyl chloride has been in existence for a long time far less is known about it than about the comparatively new polyolefins. It is incom­ parably more difficult to process because of its low decomposition tempe­ rature, a fact which impedes laboratory tests, too. M8ny research workers say that chlorine begins splitting off just above 100 C (1,2,3). It shows the lowest activation eriergy for decomposition of all plastics, except for PVA (4). It can be attributed to its low raw-material price - it is a typical recyclinq product of the chemical joint utilities - as well as.
    [Show full text]
  • The Function and Selection of Ester Plasticizers
    The Function and Selection of Ester Plasticizers Plasticizer basics As defined by ASTM, a plasticizer is a substance incorporated into a plastic or elastomer to increase its flexibility, workability or distensibility.1 In its simplest concept, it is a high-boiling organic solvent that, when added to a rigid substance, imparts flexibility. Plasticizers include a large variety of organic liquids, such as petroleum fractions, coal tar distillates, animal fats and plant extracts, and reacted products made of those materials. Ester plasticizers, the subject of this paper, are the latter. Elastomer and plastic polymers may be tough, dry or rigid materials that, for many applications, have a need for plasticizers. A plasticizer, among other contributions, will reduce the melt viscosity, lower the temperature of a second order glass transition (Tg) or lower the elastic modulus of a polymer. This paper discusses ester plasticizers, one of the more common and important plasticizer classes. Function Plasticizers are polymer modifiers, as are all the other ingredients included for the formation of an elastomer compound. Plasticizers may be thought of according to their function in a compound or by their type. Some of those classifications might be internal, external, chemical, physical, esters, oils, primary, secondary, etc. Internal plasticizers include flexible monomers (soft segments) incorporated regularly or irregularly between inflexible monomers (hard segments) of a polymer chain. Flexible polymers may be added to rigid polymers, for example, nitrile rubber to polyvinyl chloride (PVC), or grafted as side chains that reduce crystallinity and Tg through the reduction of intermolecular forces. External plasticizers are materials that interact physically with the elastomer but that do not chemically react with the polymer.
    [Show full text]
  • Thermal Analysis of Polyvinyl Chloride TA N0.65 FEB.1995 - Influence of Plasticizer on Glass Transition
    Thermal Analysis of Polyvinyl Chloride TA N0.65 FEB.1995 - Influence of Plasticizer on Glass Transition - 1. Introduction Polyvinyl chloride (PVC) is used as an all-purpose plastic in a wide variety of fields ranging from industrial materials such as pipes and wire coating materials to general consumable materials such as film and sheets. One characteristic that makes PVC different from other polymers is the ability to greatly adjust the elasticity and hardness of end products through the addition of plasticizer. Differential scanning calorimetry (DSC) and thermo-mechanical analysis (TMA) can evaluate the fluctuations of the glass transition points of plasticized PVC. This brief introduces examples of DSC and TMA measurements of the glass transition point fluctuations of plasticized PVC with different dioctyl phthalate (DOP) concentrations. 2. Measurements Three types of PVC samples were used: non-plasticized PVC and plasticized PVC containing 10wt% and 20wt% DOP. DSC220C and TMA210C units were connected to a SSC5200H Desk Station for the measurements. For the DSC measurement conditions, a 10mg sample was placed an aluminum open type sample container. The measurement temperature range was -20°C to 120°C and a heating rate of 10°C/min was used. For the TMA measurements, an expansion/compression probe was used and the load was 3g. The measurement temperature range was -40°C to 120°C with a heating rate of 5°C/min. Figure 1 DSC Measurement Data Figure 2 TMA Measurement Data for Each PVC Samples for Each PVC Samples - 1 - Table 1 Analysis Results of the Glass Transition Temperature of PVC Samples By DSC, TMA and DMS Measurements DOP DSC TMA*5 DMS*6 (wt%) Tig (°C )*1 Tmg (°C )*2 Teg (°C )*3 ΔCp (J/g°C )*4 (°C ) (°C ) 0 71.0 76.0 80.2 0.311 75.6 76.8 10 40.8 51.2 59.2 0.273 53.6 52.9 20 16.8 30.7 42.6 0.191 29.6 32.5 *1 Onset temperature of Tg *2 Mid-point temperature of Tg *3 End temperature of Tg *4 Specific Heat Capacity difference before and after Tg *5 Intersection of the extrapolation line *6 Peak temperature of loss modulus (E”) at measurement frequency 1Hz 3.
    [Show full text]