Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat

Total Page:16

File Type:pdf, Size:1020Kb

Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat Diabetes Volume 69, December 2020 2603 Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat Heng Fan,1 Yujie Zhang,1 Jun Zhang,2 Qiyuan Yao,3 Yongfeng Song,4 Qiwei Shen,3 Jun Lin,5 Yuanxu Gao,6 Xiuyun Wang,7,8 Lei Zhang,1 Yinliang Zhang,1 Pingsheng Liu,9 Jiajun Zhao,4 Qinghua Cui,6 John Zhong Li,7,8 and Yongsheng Chang10 Diabetes 2020;69:2603–2618 | https://doi.org/10.2337/db19-1153 Promoting development and function of brown and beige expression of Pgc1a, a master regulator of fat thermo- fat may represent an attractive treatment of obesity. In genesis, by a direct binding to its gene promoter region, the current study, we show that fat Klf9 expression is subsequently promoting energy expenditure. The cur- markedly induced by cold exposure and a b-adrenergic rent study reveals a critical role for KLF9 in mediating agonist. Moreover, Klf9 expression levels in human white thermogenesis of brown and beige fat. adipose tissue (WAT) are inversely correlated with adi- posity, and Klf9 overexpression in primary fat cells stim- ulates cellular thermogenesis, which is Ucp1 dependent. METABOLISM Obesity results from a chronic imbalance between energy Fat-specific Klf9 transgenic mice gain less weight and intake and energy expenditure, which is closely associated have smaller fat pads due to increased thermogenesis of brown and beige fat. Moreover, Klf9 transgenic mice with many diseases, including cardiovascular diseases, type displayed lower fasting blood glucose levels and im- 2 diabetes, and nonalcoholic fatty liver disease. Tradition- proved glucose tolerance and insulin sensitivity under ally, adipocytes are divided into two types: unilocular white the high-fat diet condition. Conversely, Klf9 mutation in adipocytes and brown adipocytes. White adipose tissue brown adipocytes reduces the expression of thermogenic (WAT) is essential for triglyceride storage and endocrine genes, causing a reduction in cellular respiration. Klf9- signaling, while brown adipose tissue (BAT) dissipates energy mutant mice exhibited obesity and cold sensitivity due to to generate heat through uncoupled respiration mediated by impairments in the thermogenic function of fat. Finally, Ucp1 (1–3). Recent studies have identified another type of fat Klf9 deletion inhibits the b3 agonist–mediated induc- thermogenic adipocytes, namely, beige cells. Beige adipocytes tion of WAT browning and brown adipose tissue thermo- reside with white adipocytes and emerge in response to cold genesis. Mechanistically, cold-inducible Klf9 stimulates exposure or b-adrenergic receptor agonists (4,5). 1National Laboratory of Medical Molecular Biology, Institute of Basic Medical 9National Laboratory of Biomacromolecules, CAS Center for Excellence in Bio- Sciences, Chinese Academy of Medical Sciences and Peking Union Medical macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, College, Beijing, China China 2Department of Basic Medicine, School of Medicine, Shihezi University, Xinjiang, 10Key Laboratory of Immune Microenvironment and Disease (Ministry of Educa- China tion), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of 3Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China China Corresponding author: John Zhong Li, [email protected], or Yongsheng 4 fi Department of Endocrinology, Shandong Provincial Hospital af liated to Shan- Chang, [email protected] dong First Medical University, Jinan, China Received 26 November 2019 and accepted 16 September 2020 5Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China This article contains supplementary material online at https://doi.org/10.2337/ 6Department of Biomedical Informatics, Department of Physiology and Patho- figshare.12988229. physiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardio- H.F. is currently affiliated with the Institute of Human Stem Cells, General Hospital vascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, of Ningxia Medical University, Ningxia, China. China H.F., Y.Z., J. Zhang, and Q.Y. contributed equally. 7Key Laboratory of Rare Metabolic Disease, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, © 2020 by the American Diabetes Association. Readers may use this article as fi China long as the work is properly cited, the use is educational and not for pro t, and the 8Department of Biochemistry and Molecular Biology, Nanjing Medical University, work is not altered. More information is available at https://www.diabetesjournals Nanjing, China .org/content/license. 2604 Klf9 and Thermogenesis of Brown and Beige Fat Diabetes Volume 69, December 2020 PGC1a is a central regulator in brown fat thermo- were housed and maintained in 12-h light and dark photo- genesis and is highly expressed in BAT. PGC1a expression periods. For DIO studies, 4-week-old male mice were fed in BAT is strongly induced by cold stress and b-adrenergic on a high-fat diet (HFD) (D12492; Research Diets) for signals, linking the physiological activator of brown fat 3 months. thermogenesis and the transcriptional machinery in brown adipocytes (6,7). Genetic ablation of Pgc1a results in Glucose and Insulin Tolerance Test reduced capacity for cold-induced thermogenesis in vivo The glucose tolerance tests (GTTs) and insulin tolerance and in a blunted response to cAMP signaling in brown fat tests (ITTs) were performed as previously described cells (8,9). (14,16). Krüppel-like factor 9 (KLF9) (also called basic transcrip- tion element binding protein 1), a member of the Krüppel- Body Weight, Body Temperature, Body Composition, and Energy Expenditure Measurement like family of zinc-finger domain transcription factors, Body weight was measured weekly. Body temperature was plays a key role in development (10–12). Interestingly, measured by rectal thermometer. Body composition (fat a human genetic study (genome-wide association study and lean mass) was determined by MRI (Echomri.Combo- [GWAS]) indicated that Klf9 is associated with BMI (13). 700). For metabolic studies, male mice were housed in- However, how KLF9 regulates obesity remains unclear. dividually in metabolic cages (Columbus Instruments) with Furthermore, we recently reportedthatKLF9promotes hepatic gluconeogenesis and hyperglycemia (14). Klf9 is free access to food and water. Oxygen consumption rate (OCR) was monitored for 48 h. Activity monitoring was ubiquitously expressed in many tissues (15). Neverthe- performed simultaneously with metabolic measurements. less, whether and how fat KLF9 regulates energy metab- olism remains unexplored. In the current study, we reveal Micro-Positron Emission Tomography/Computed the physiological function of KLF9 in adipose tissues. Tomography Glucose uptake of brown adipose tissue were determined RESEARCH DESIGN AND METHODS by positron emission tomography/computed tomography Ethics Compliance Statement (PET/CT) as previously described (17). Studies involving human specimens were approved by the ethics committees of Huashan Hospital, Fudan University, Histology Analysis and Shihezi University School of Medicine. Human omen- For hematoxylin-eosin (H-E) staining, Oil Red staining, tal adipose tissues specimens were collected after informed and UCP1 immunohistochemistry, inguinal WAT (iWAT) consent was obtained, and the study was approved by the and epididymal WAT (eWAT) and BAT tissues were treated institutional review board of Huashan Hospital (no. 2015- as previously described (17). For transmission electron 145). All animal experiments were approved by the In- microscopy, BAT sections were treated as previously de- stitute of Basic Medical Sciences and Peking Union Medical scribed (17). College. All animal experiments were conducted under protocols approved by the Institutional Animal Care Use Stromal Vascular Fraction Isolation and Differentiation & Welfare Research Committee, the Institute of Basic of Primary Brown Adipocytes Medical Sciences, Chinese Academy of Medical Sciences Isolation of brown fat stromal vascular fraction (SVF) and and Peking Union Medical College (ACUC-A01-2014-033 differentiation of primary brown preadipocytes were per- and ACUC2011A02-293). formed as previously described (17), with minor modifi- cations. Briefly, the digested brown adipose tissue was Animal Treatment filtered through a 60-mesh nylon screen and centrifuged Male mice were used during this study. Global Klf9 mutant (1,000 3 rpm) for 10 min to collect the preadipocytes. mice were obtained from The Jackson Laboratory (no. 012909). Klf9 transgenic mice were generated at Beijing Oxygen Consumption Assays of Brown Adipocytes and Biocytogen Co., Ltd. The full-length coding sequence of Fat mouse Klf9 was amplified from hepatic RNA by PCR. The For determination of cellular oxygen consumption, isolated 5.4-kb adiponectin promoter was kindly provided by Dr. brown preadipocytes were plated in an XF24-well microplate Philipp E. Scherer (Department of Internal Medicine, (Seahorse Bioscience) and differentiated into mature brown University of Texas Southwestern Medical Center), which adipocytes, followed by OCR measurement at 37°C with an was inserted into pBluescript vector. The Klf9 cDNA was XF24 analyzer (Seahorse Bioscience) in accordance with the inserted into vector containing the 5.4-kb adiponectin manufacturer’s instructions. Oligomycin (2 mmol/L), car-
Recommended publications
  • Kruppel-Like Factor 9 Inhibits Glioblastoma Stemness
    KRUPPEL-LIKE FACTOR 9 INHIBITS GLIOBLASTOMA STEMNESS THROUGH GLOBAL TRANSCRIPTION REPRESSION AND INHIBITION OF INTEGRIN ALPHA 6 AND CD151 By Jessica Tilghman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2015 Abstract Glioblastoma (GBM) stem cells (GSCs) represent tumor-propagating cells with stem-like characteristics (stemness) that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing novel strategies that target tumor propagation to inhibit cancer progression and improve patient survival. Krüppel-like factor 9 (KLF9) has emerged as a regulator of cell differentiation, neural development, and oncogenesis; however, the molecular basis for KLF9’s diverse contextual functions has been unclear. We establish for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stem-like cells, and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and regulation of cancer stem-like phenotype. A detailed analysis of two novel KLF9 targets suggests that KLF9 inhibits glioma cell stemness by repressing expression of integrin α6 and CD151. The expression of one candidate KLF9 target gene ITGA6 coding for integrin α6 was verified to be downregulated by KLF9 in GSCs. ITGA6 transcription repression by KLF9 altered GBM neurosphere cell behavior as evidenced by reduced cell adhesion to and migration through membrane coated with the integrin α6 ligand laminin. Forced expression of integrin α6 partially rescued GBM neurosphere cells from the differentiating and adhesion/migration-inhibiting effects of KLF9.
    [Show full text]
  • Using Viper, a Package for Virtual Inference of Protein-Activity by Enriched Regulon Analysis
    Using viper, a package for Virtual Inference of Protein-activity by Enriched Regulon analysis Mariano J. Alvarez1,2, Federico M. Giorgi1, and Andrea Califano1 1Department of Systems Biology, Columbia University, 1130 St. Nicholas Ave., New York 2DarwinHealth Inc, 3960 Broadway, New York May 19, 2021 1 Overview of VIPER Phenotypic changes effected by pathophysiological events are now routinely captured by gene expression pro- file (GEP) measurements, determining mRNA abundance on a genome-wide scale in a cellular population[8, 9]. In contrast, methods to measure protein abundance on a proteome-wide scale using arrays[11] or mass spectrometry[10] technologies are far less developed, covering only a fraction of proteins, requiring large amounts of tissue, and failing to directly capture protein activity. Furthermore, mRNA expression does not constitute a reliable predictor of protein activity, as it fails to capture a variety of post-transcriptional and post-translational events that are involved in its modulation. Even reliable measurements of protein abundance, for instance by low-throughput antibody based methods or by higher-throughput methods such as mass spectrometry, do not necessarily provide quantitative assessment of functional activity. For instance, enzymatic activity of signal transduction proteins, such as kinases, ubiquitin ligases, and acetyltransferases, is frequently modulated by post-translational modification events that do not affect total protein abundance. Similarly, transcription factors may require post-translationally mediated activation, nuclear translocation, and co-factor availability before they may regulate specific repertoires of their transcriptional targets. Fi- nally, most target-specific drugs affect the activity of their protein substrates rather than their protein or mRNA transcript abundance.
    [Show full text]
  • GATA2 Regulates Mast Cell Identity and Responsiveness to Antigenic Stimulation by Promoting Chromatin Remodeling at Super- Enhancers
    ARTICLE https://doi.org/10.1038/s41467-020-20766-0 OPEN GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super- enhancers Yapeng Li1, Junfeng Gao 1, Mohammad Kamran1, Laura Harmacek2, Thomas Danhorn 2, Sonia M. Leach1,2, ✉ Brian P. O’Connor2, James R. Hagman 1,3 & Hua Huang 1,3 1234567890():,; Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage- determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes. 1 Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA. 2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA. 3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, ✉ CO 80045, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:494 | https://doi.org/10.1038/s41467-020-20766-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20766-0 ast cells (MCs) are critical effectors in immunity that at key MC genes.
    [Show full text]
  • The Expression of Genes Contributing to Pancreatic Adenocarcinoma Progression Is Influenced by the Respective Environment – Sagini Et Al
    The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment – Sagini et al Supplementary Figure 1: Target genes regulated by TGM2. Figure represents 24 genes regulated by TGM2, which were obtained from Ingenuity Pathway Analysis. As indicated, 9 genes (marked red) are down-regulated by TGM2. On the contrary, 15 genes (marked red) are up-regulated by TGM2. Supplementary Table 1: Functional annotations of genes from Suit2-007 cells growing in pancreatic environment Categoriesa Diseases or p-Valuec Predicted Activation Number of genesf Functions activationd Z-scoree Annotationb Cell movement Cell movement 1,56E-11 increased 2,199 LAMB3, CEACAM6, CCL20, AGR2, MUC1, CXCL1, LAMA3, LCN2, COL17A1, CXCL8, AIF1, MMP7, CEMIP, JUP, SOD2, S100A4, PDGFA, NDRG1, SGK1, IGFBP3, DDR1, IL1A, CDKN1A, NREP, SEMA3E SERPINA3, SDC4, ALPP, CX3CL1, NFKBIA, ANXA3, CDH1, CDCP1, CRYAB, TUBB2B, FOXQ1, SLPI, F3, GRINA, ITGA2, ARPIN/C15orf38- AP3S2, SPTLC1, IL10, TSC22D3, LAMC2, TCAF1, CDH3, MX1, LEP, ZC3H12A, PMP22, IL32, FAM83H, EFNA1, PATJ, CEBPB, SERPINA5, PTK6, EPHB6, JUND, TNFSF14, ERBB3, TNFRSF25, FCAR, CXCL16, HLA-A, CEACAM1, FAT1, AHR, CSF2RA, CLDN7, MAPK13, FERMT1, TCAF2, MST1R, CD99, PTP4A2, PHLDA1, DEFB1, RHOB, TNFSF15, CD44, CSF2, SERPINB5, TGM2, SRC, ITGA6, TNC, HNRNPA2B1, RHOD, SKI, KISS1, TACSTD2, GNAI2, CXCL2, NFKB2, TAGLN2, TNF, CD74, PTPRK, STAT3, ARHGAP21, VEGFA, MYH9, SAA1, F11R, PDCD4, IQGAP1, DCN, MAPK8IP3, STC1, ADAM15, LTBP2, HOOK1, CST3, EPHA1, TIMP2, LPAR2, CORO1A, CLDN3, MYO1C,
    [Show full text]
  • Circptpra Acts As a Tumor Suppressor in Bladder Cancer by Sponging Mir-636 and Upregulating KLF9
    www.aging-us.com AGING 2019, Vol. 11, No. 23 Research Paper CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9 Qingqing He1,2,*, Lifang Huang2,*, Dong Yan1,2,*, Junming Bi1,2, Meihua Yang1,2, Jian Huang1,2, Tianxin Lin1,2 1Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 2Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China *Equal contribution Correspondence to: Jian Huang, Tianxin Lin; email: [email protected], [email protected] Keywords: bladder cancer, circPTPRA, miR-636, KLF9, proliferation Received: September 4, 2019 Accepted: November 18, 2019 Published: December 10, 2019 Copyright: He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Growing evidence suggests that circular RNAs (circRNAs) play pivotal roles in cancer progression. In this study, bioinformatic analysis identified a dysregulated circRNA termed circPTPRA in bladder cancer (BC). By using qRT- PCR analysis, we verified that circPTPRA is down-regulated in clinical BC specimens compared with the matched non-tumor samples, while correlation analyses showed that low circPTPRA expression is associated with poor prognosis, advanced tumor stage and larger tumor size. Based on these findings, we conducted functional assays and revealed that circPTPRA inhibits BC cell proliferation in vitro and tumor growth in vivo. In addition, RNA pull-down, miRNA capture, FISH, and luciferase reporter assays demonstrated that circPTPRA can directly sponge miR-636.
    [Show full text]
  • Microrna-200B Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting P27 and KLF9
    animals Article MicroRNA-200b Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting p27 and KLF9 Xiayang Jin , Jiqing Wang * , Jiang Hu, Xiu Liu, Shaobin Li , Yujie Lu, Huimin Zhen, Mingna Li, Zhidong Zhao and Yuzhu Luo * Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; [email protected] (X.J.); [email protected] (J.H.); [email protected] (X.L.); [email protected] (S.L.); [email protected] (Y.L.); [email protected] (H.Z.); [email protected] (M.L.); [email protected] (Z.Z.) * Correspondence: [email protected] (J.W.); [email protected] (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.) Simple Summary: The miR-200b has been shown to play an important role in preadipocyte prolifer- ation and differentiation. Herein, we explored the role of miR-200b in ovine adipocyte development, using Oil Red O staining, cell viability analysis, EdU and RT-qPCR. The results showed that miR-200b facilitated proliferation and suppressed the differentiation of preadipocytes. The dual fluorescent reporter vector experiments showed that miR-200b directly targeted p27 and KLF9. Meanwhile, we demonstrated that p27 significantly inhibited the proliferation, while KLF9 significantly promoted the differentiation of preadipocytes. Abstract: MicroRNAs (miRNAs) are crucial regulatory molecules in lipid deposition and metabolism. Citation: Jin, X.; Wang, J.; Hu, J.; Liu, However, the effect of miR-200b on the regulation of proliferation and adipogenesis of ovine X.; Li, S.; Lu, Y.; Zhen, H.; Li, M.; Zhao, Z.; Luo, Y.
    [Show full text]
  • Response of Adult Mouse Uterus to Early Disruption of Estrogen Receptor-A Signaling Is Influenced by Kru¨Ppel-Like Factor 9
    147 Response of adult mouse uterus to early disruption of estrogen receptor-a signaling is influenced by Kru¨ppel-like factor 9 C D Simmons, J M P Pabona, Z Zeng, M C Velarde, D Gaddy, F A Simmen and R C M Simmen1 Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, Arkansas 72202, USA 1Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas 72202, USA (Correspondence should be addressed to R C M Simmen; Email: [email protected]) (M C Velarde is now at the Buck Institute for Age Research, Novato, California 94945, USA) Abstract Inappropriate early exposure of the hormone-responsive (PNDs) 1–5. Uterine tissues collected at PND84 were uterus to estrogenic compounds is associated with increased subjected to histological, immunological, and molecular risk for adult reproductive diseases including endometrial analyses. Compared with WT mice, KO mice demonstrated cancers. While the dysregulation of estrogen receptor-a larger endometrial glands and lower endometrial gland (ESR1) signaling is well acknowledged to mediate early numbers; DES exposure exacerbated these differences. Loss events in tumor initiation, mechanisms contributing to of KLF9 expression resulted in increased glandular ESR1 sustained ESR1 activity later in life and leading to induction immunoreactivity with DES, without effects on serum of oncogenic pathways remain poorly understood. We had estradiol levels. Quantitative RT-PCR analyses indicated shown previously that the transcription factor Kru¨ppel-like altered expression of uterine genes commonly dysregulated in factor 9 (KLF9) represses ESR1 expression and activity in endometrial cancers (Akt1, Mmp9, Slpi, and Tgfb1) and of Ishikawa endometrial glandular epithelial cells.
    [Show full text]
  • Phosphorylation of KLF3 Affects Its DNA Binding Activity and Biological Function
    Phosphorylation of KLF3 affects its DNA binding activity and biological function Vitri Aryani Dewi Supervisor: Prof. Merlin Crossley A thesis submitted for the fulfilment of the requirements for the degree of Doctor of Philosophy (Biochemistry and Molecular Genetics) School of Biotechnology and Biomolecular Sciences The University of New South Wales August 2012 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: DEWI First name: VITRI Other name/s: ARYANI Abbreviation for degree as given in the University calendar: PhD School: BABS Faculty: SCIENCE Title: Phosphorylation of KLF3 affects its DNA binding activity and biological function Abstract 350 words maximum: (PLEASE TYPE) Krüppel-Like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor, which binds to CACCC-boxes and GC-rich regions in the promoters and enhancers of its target genes. Studies using knock-out mice have revealed functional roles for KLF3 in diverse tissues. Klf3-/- mice have a reduced life- span, leaner body composition, disturbed B-cell maturation and mild anaemia. This thesis explores the regulation of KLF3 function via post-translational modifications. We show that KLF3 exists as a phospho-protein in vivo and that post-translational modifications change in response to physiological stimuli. We have found that phosphorylation by Homeodomain Interacting Protein Kinase 2 (HIPK2) enhances KLF3’s DNA binding affinity. A mutant form of KLF3, in which serine 249 has been mutated to alanine has significantly reduced affinity for DNA, suggesting that phosphorylation at this site contributes to DNA binding capacity. Given that HIPK2 has been implicated in the cellular response to UV DNA damage, we investigated a potential role for KLF3 in this pathway.
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), [email protected]. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • Identification of Genomic Targets of Krüppel-Like Factor 9 in Mouse Hippocampal
    Identification of Genomic Targets of Krüppel-like Factor 9 in Mouse Hippocampal Neurons: Evidence for a role in modulating peripheral circadian clocks by Joseph R. Knoedler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in the University of Michigan 2016 Doctoral Committee: Professor Robert J. Denver, Chair Professor Daniel Goldman Professor Diane Robins Professor Audrey Seasholtz Associate Professor Bing Ye ©Joseph R. Knoedler All Rights Reserved 2016 To my parents, who never once questioned my decision to become the other kind of doctor, And to Lucy, who has pushed me to be a better person from day one. ii Acknowledgements I have a huge number of people to thank for having made it to this point, so in no particular order: -I would like to thank my adviser, Dr. Robert J. Denver, for his guidance, encouragement, and patience over the last seven years; his mentorship has been indispensable for my growth as a scientist -I would also like to thank my committee members, Drs. Audrey Seasholtz, Dan Goldman, Diane Robins and Bing Ye, for their constructive feedback and their willingness to meet in a frequently cold, windowless room across campus from where they work -I am hugely indebted to Pia Bagamasbad and Yasuhiro Kyono for teaching me almost everything I know about molecular biology and bioinformatics, and to Arasakumar Subramani for his tireless work during the home stretch to my dissertation -I am grateful for the Neuroscience Program leadership and staff, in particular
    [Show full text]
  • Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And
    1 Cell culture-based profiling across mammals reveals 2 DNA repair and metabolism as determinants of 3 species longevity 4 5 Siming Ma1, Akhil Upneja1, Andrzej Galecki2,3, Yi-Miau Tsai2, Charles F. Burant4, Sasha 6 Raskind4, Quanwei Zhang5, Zhengdong D. Zhang5, Andrei Seluanov6, Vera Gorbunova6, 7 Clary B. Clish7, Richard A. Miller2, Vadim N. Gladyshev1* 8 9 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard 10 Medical School, Boston, MA, 02115, USA 11 2 Department of Pathology and Geriatrics Center, University of Michigan Medical School, 12 Ann Arbor, MI 48109, USA 13 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 14 MI 48109, USA 15 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 16 48109, USA 17 5 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10128, USA 18 6 Department of Biology, University of Rochester, Rochester, NY 14627, USA 19 7 Broad Institute, Cambridge, MA 02142, US 20 21 * corresponding author: Vadim N. Gladyshev ([email protected]) 22 ABSTRACT 23 Mammalian lifespan differs by >100-fold, but the mechanisms associated with such 24 longevity differences are not understood. Here, we conducted a study on primary skin 25 fibroblasts isolated from 16 species of mammals and maintained under identical cell culture 26 conditions. We developed a pipeline for obtaining species-specific ortholog sequences, 27 profiled gene expression by RNA-seq and small molecules by metabolite profiling, and 28 identified genes and metabolites correlating with species longevity. Cells from longer-lived 29 species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated 30 proteolysis and protein transport, and showed high levels of amino acids but low levels of 31 lysophosphatidylcholine and lysophosphatidylethanolamine.
    [Show full text]
  • Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
    ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
    [Show full text]