<<

Krynica, June 2005 Quantum Optics VI

„Fermi-Bose mixtures of 40K and 87Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock

Mixtures of ultracold Bose- and Fermi-

Bright Fermi-Bose solitons

Dynamics of the system: e.g.: mean field driven collapse

Universität Hamburg Institut für Laserphysik ColdCold QuantumQuantum GasGas GroupGroup HamburgHamburg

Fermi-Bose-Mixture Spinor-BEC

BEC ‘in Space‘ Atom-Guiding in PBF ColdCold QuantumQuantum GasGas GroupGroup HamburgHamburg

Fermi-Bose-Mixture Spinor-BEC

Poster by Silke Ospelkaus Poster by Jochen Kronjäger on Tuesday on Monday Bose-Einstein Condensation

Bose-Einstein distribution 1 f (ε) = e(ε −µ )/ kT −1 critical for BEC

1 S. N. Bose A. Einstein 3 kTc ≈ 0.94 hω N

T>Tc T

Tc T Bose-Einstein Condensation

Bose-Einstein distribution 1 f (ε) = High-temperature effect !!! e(ε −µ )/ kT −1 critical temperature for BEC

1 3 kTc ≈ 0.94 hω N

T>Tc T

Tc T in a Harmonic Trap

Fermi-Dirac distribution

1 f (ε) = ( ) / e ε −µ kT + 1 Fermi temperature

1 3 E. Fermi P.A.M. Dirac kTF ≈1,81 hω N T>T T=0 F f(ε)

T=0 T~TF 1 εF

T>TF

εF ε Fermions in a Harmonic Trap

Fermi-Dirac distribution

1 Quantum statistical effects also for f (ε) = ( ) / ε −µ kT + 1 T~TF, but more difficult to see... e Fermi temperature

1 3 kTF ≈1,81 hω N T>T T

T=0 T~TF 1

T>TF

εF ε Fermionic Quantum Gases difficulty to reach low for Fermi gases: no s-wave scattering of identical fermions! Æ no thermalization in evaporative cooling a) Æ use different components (D. Jin et al. 98)

b) Æ use e.g. a BEC to cool a Fermi sea (and look to the details...) thermal

condensate fraction Fermions e.g.: Distributions of Fermions and Bosons

P(p) P(p)

T>>Tc,TF

0 p -pF 0 pF p

P(p) P(p)

T

P(p) P(p)

T<

P(p) P(p)

T>>Tc,TF

0 p -pF 0 pF p

P(p) P(p)

T

MIT

C. Raman et al., PRL. 83, 2502-2505 (1999). • scissors modes

Oxford

O.M. Maragò et al., PRL 84, 2056 (2000) • vortices, vortex lattice

JILA, ENS, MIT

Image from: P. Engels and E. A. Cornell in Quantum Gases: b) Fermions

Cooper pairs - BCS superfluidity

T60 exponentially difficult to reach r k π − 2kF a TBCS ≈ 0.28TF e r − k (valid for kF|a|<<1)

-4 e.g.: kFa=-0.2 -> TBCS ~ 10 TF (very very small)

(very) low-temperature effect Superfluidity in Quantum Gases: b) Fermions ways out of it:

manipulate TBCS using a Feshbach resonance

BEC of molecules BEC/BCS crossover

•Duke •ENS •Innsbruck •JILA •MIT •Rice

use additional particles to mediate interactions - Bosons • ? ... ÆÆFermi-Bose Mixtures

mediated superfluidity

L. Viverit, Phys. Rev. A 66, 023605 (2002) F. Matera, Phys. Rev. A 68, 043624 (2003) T. Swislocki, T. Karpiuk, M. Brewsczyk, Poster 1, Monday ... • boson mediated superfluidity in a lattice

F. Illuminati and A. Albus, Phys. Rev. Lett. 93, 090406 (2004) ... Æ interplay between tunneling and various on-site-interactions Fermi-Bose Mixtures there is even more:

• special interest: mixtures in optical lattices

Æ new phases, composite particles, ...

• composite fermions II M. Lewenstein et al., FD Phys. Rev. Lett. 92, 050401 (2004) 2 IISF

M. Cramer et al., 1 IDM U IIFL Phys. Rev. Lett. 93, 190405 (2004) bf IFL Ubb 0 IIDM IIFL IDM -1 IISF IIFL . IIDM . -201 µb/Ubb Fermi-Bose Mixtures

effective interactions: Bose-Bose int. Bose-Fermi int. (B) 2 N ∂ϕ 2 F 2 bosons h 2 (B) (B) (B) (B) (B) (F ) (B) ih = − ∇ ϕ + Vtrap ϕ + gB N B ϕ ϕ + gBF ∑ ϕi ϕ , ∂t 2m i =1 (F ) 2 ∂ϕ 2 fermions j h 2 (F ) (F ) (F ) (B) (F ) ih = − ∇ ϕ j + Vtrap ϕ j + gBF N B ϕ ϕ j ∂t 2m

new degrees of freedom due to additional interactions

e.g.: 40K - 87Rb mixture:

gB > 0 (aBB ~ 100 a0)

gBF < 0 (aBF ~ -280 a0) tunable by Feshbach resonances!

S. Inouye et al., PRL 93, 183201 (2004) see also: G. Modugno et al., Science 297, 2240 (2002) Fermi-Bose Mixtures

ÆÆ detailed understanding of interactions and also of loss processes is necessary

Bose-FermiBose-Fermi interactioninteraction physicsphysics --ssystemystembboundaryoundary conditionsconditions --ccoupledoupled excitationsexcitations (e.g.(e.g.eexp.xp. in inJinJin g group,roup, JILA JILA and andInguscioInguscio group, group, LENS) LENS) --BBose-Fermiose-Fermi interactionsinteractions --interspeciesinterspecies correlationscorrelations --nnovelovel phasesphases --hheteronucleareteronuclear moleculesmolecules

6Li/7Li at Duke U., ENS Paris, Innsbruck U., Rice U. 6Li/23Na at MIT 40K/87Rb at LENS Florence, Jila Boulder, Hamburg U., ETH Zürich Hamburg Setup

two-species 2D-MOT flux: 87Rb ~ 5 · 109 s-1 40K ~ 5·106 s-1

two-species 3D-MOT Rb ~ 1010 K ~ 3·107 within 10..20 s

in addition: dipole trap magnetic trap

νax ~ 11 Hz (Rb) νrad ~ 260 Hz (Rb) soon: optical lattice Hamburg Setup Mai 2003

laser systems

experimental setup

first BEC 7/2004

first degenerate Fermi 8/2004 Sympathetic Cooling state of the art 76 5x10 Li at T~0.05TF (temperature): 640 1x10 K at T~0.15TF (for K-Rb cooling)

νax=11Hz, νr=330Hz ν =11Hz, ν =267Hz state of the art ax r (particle numbers): f K-atoms o only BEC: >5*106

only Fermions: >1*106 number

number of Rb-atoms Attractive Boson- Interaction aK-Rb ~ -279 a0 Æeffective potential for fermions:

+ =

BEC experimental signatures:

Fermion cloud without BEC Fermion cloud with BEC Mean Field Instability of the System

BEC BEC attraction of fermions Fermi-Sea

BEC density increase

collapsecollapse

runaway Collapse Experiments 7Li collapse Sackett et al., PRL 82, 876 (1999) J.M. Gerton et al., Nature 8, 692 (2000)

85Rb "Bosenova" Donley et al., Nature 412, 295 (2001)

Images from: http://spot.colorado.edu/~cwieman/Bosenova.html

40K / 87Rb Fermi-Bose collapse G. Modugno et al., Science 297, 2240 (2002) Fermi-Bose Mixtures in the Large Particle Limit: Local Collapse Dynamics Fermi-Bose Mixtures in the Large Particle Limit: Collapse

but...: is it just losses??

Æ locally high density: enhanced two- and three-body losses?? Lifetime Regimes

τ = 197ms τ = 21ms

time/frequency scales: -> collapse-time - ν (K) = 394 Hz 3-body-loss r due to trap dynamics - νax(K) = 17 Hz - thermalization 10..50 ms - collapse: ~ 20 ms - loss processes 100..200 ms

loss and collapse dynamics can be distinguished! 3-Body Losses measurement of the 3-body KRb decay rate model for 3-body inelastic N K 1 K K Rb Rb 3 2 decay in thermal mixture: d r nB r,t nF r,t N K N K 3 2 T T d rnB r,t nF r,t integration over time: ln N T ln N 0 K dt K K K Rb Rb 0 N K t

T ln N T ln N 0 K K Result: 0 cm 6 K ( 3.5 +/- 0.2) 10 28 -0.5 KRbRb s

-1 Measurement does not depend on K atom number calibration -1.5 For 87Rb |2,2> decay, we reproduce the value from Söding et al. -2 [Appl. Phys. B69, 257 (1999)]

-2.5 0 20 40 60 80 100 120 140 160 180

3 2 T d rnB r,t nF r,t 38 6 0 dt 10 m s N K t Fermi-Bose Mixtures in the Large Particle Limit: NBoson Stability Diagram stable mixture

non stable mixture aKRb=-281 a0 (S. Inouye et al., PRL 93, 183201 (2004)

NFermion Does a Bose Einstein condensate float in a Fermi sea?

... it depends ... Solitons in Matter Waves g>0 g<0 dark solitons filled solitons bright solitons

quantum

K.S. Strecker et al., Nature 417, 150 (2002) interactions B. P. Anderson et al., PRL 86, 2926 (2001) gap solitons "negative mass" L. Khaykovich et al., Science 296, 1290 (2002)

4 NSoliton< 10

S. Burger et al., PRL 83, 5198 (1999) quasi-1D regime

collapse for Eint>Eradial J. Denschlag et al., Science 287, 97 (2000) B. Eiermann et al. PRL 92, 230401(2004) 1D: Bright Mixed ‘‘Solitons‘‘ cr Bose-Bose repulsion versus Fermi-Bose attraction gBnB = gBF nF after switching behaviour in off the trap: cr the trap: g BF < g BF our data theory cr g BF > g BF

theory by T. Karpiuk, M. Brewczyk, M. Gaida, K. Rzazewski dynamics: constant envelope 9

simulation from M. Brewczyk et al.

T. Karpiuk, M. Brewczyk, S. Ospelkaus-Schwarzer, K. Bongs, M. Gajda, and K. Rzążewski, PRL 93, 100401 (2004) Collision simulation shows complex dynamics:

- repulsive

- shape oscillations

- particle exchange

Simulation from M. Brewczyk et al.

fermionic character due to the Pauli-principle ? Bose-Fermi Mixtures with Attractive Interactions in the High Density Limit effective interaction ("density") bright collapse mixed soliton attractive

boson-induced BCS ? repulsive

trap aspect ratio

InfluenceInfluenceooffllossoss processesprocesses?? HamburgHamburg TeamTeam K. Se Kai Bongs - Atom optics V. M. Baev - Fibre lasers Spinor BEC: Jochen Kronjäger Stefan Salewski Christoph Becker Ortwin Hellmig Thomas Garl Arnold Stark Martin Brinkmann Sergej Wexler Fermi-Bose mixtures K-Rb: Oliver Back Silke Ospelkaus-Schwarzer Gerald Rapior Christian Ospelkaus Philipp Ernst Oliver Wille Q. Gu -Theory Manuel Succo BEC in Space: Staff Anika Vogel Malte Schmidt Victoria Romano Atom guiding in PCF: Dieter Barloesius Stefan Vorath Reinhard Mielck Peter Moraczewski ColdCold QuantumQuantum GasGas GroupGroup HamburgHamburg

HamburgHamburg isis aa nicenice citycity...... ((forfor physicsphysics )) (and(and forfor visitsvisits!)!)