Eef2k: an Atypical Kinase Target for Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Eef2k: an Atypical Kinase Target for Cancer NEWS & ANALYSIS BIOBUSINESS BRIEFS TARGET WATCH hyperphosphorylation and improved memory deficits in mouse models of AD eEF2K: an atypical kinase (J. Clin. Invest. 129, 820–833; 2019). Chemical tools Although eEF2K is not inhibited by some target for cancer of the most prolific kinase inhibitors such as staurosporine, and no complete protein Eukaryotic elongation factor 2 kinase (eEF2K) which is involved in glutamine homeostasis crystal structure is available, there are some is an atypical member of the α-kinase family, and AMPK regulation, was also identified as compounds that have been reported as eEF2K and shows no sequence similarity to classical a substrate (J. Mol. Med. 98, 775–787; 2020). inhibitors (J. Mol. Med. 98, 775–787; 2020). protein kinases. The identification of eEF2K Overexpression of eEF2K has been One of the earliest reported inhibitors as a key regulator of several cellular processes correlated with low survival rates in patients of eEF2K is an imidazole compound implicated in tumorigenesis, as well as reports with various solid tumours, including brain, known as NH125. However, although this of its upregulation in various cancers and esophageal, pancreatic, lung and triple-negative compound inhibits the enzyme in vitro linkage to poor patient outcomes, has led to breast cancer. The inhibition of eEF2K has (IC50 = 0.060 μM) and has potent anticancer growing interest in its potential as an anticancer been linked to apoptotic and autophagic cancer activity, it was found that it actually induces target (J. Mol. Med. 98, 775–787; 2020). cell death, as well as decreased VEGF levels eEF2 phosphorylation in cells, and competes and angiogenesis (J. Mol. Med. 98, 775–787; with calmodulin rather than ATP as a Biological functions 2020). In addition, the inhibition of eEF2K mechanism of action (J. Biol. Chem. 286, eEF2K was reported in the late 1980s as a has recently been shown to synergise with 43951–43858; 2011). Consequently, it is not structurally and functionally unique protein glutaminase inhibitors or 4EBP1 depletion in a suitable tool for investigating the anticancer kinase involved in calmodulin-mediated the suppression of triple-negative breast cancer potential of inhibiting eEF2K. In the same signalling pathways. Its substrate, eEF2, cell growth (Sci. Rep. 11, 9181; 2021). study, the identification of a selective but helps ribosomes proceed with mRNAs during As well as cancer, eEF2K has been weak inhibitor of eEF2K (IC50 = 0.28 μM) the elongation step of protein synthesis. implicated in several neurological diseases. called A-484954 through a high-throughput Phosphorylation of eEF2 on its highly For example, abnormal hyperphosphorylation screen was also reported (FIG. 1b). A-484954 conserved Thr56 residue inhibits its activity of eEF2 has been observed in post-mortem decreased eEF2 phosphorylation in cells, but and thereby negatively regulates protein brain tissue from patients with Alzheimer had little effect on cancer cell growth. synthesis (FIG. 1a). More recently, the α4 disease (AD), and genetic reduction of So far, no selective and suitably potent regulatory subunit of phosphatase 2A (PP2A), eEF2K suppressed AD-associated eEF2 inhibitors of eEF2K have been identified, and such compounds are needed to better a • Hormones Glutamate Low energy understand the potential of eEF2K as a • Growth factors status target for cancer, as well as other diseases. • Amino acids Concomitant inhibition of proteins that cooperate with eEF2K in maintaining proteostasis such as HSP90 (J. Biol. Chem. mTORC1 MEK/ERK mTORC1/S6K1 NMDAR AMPK 294, 7169–7176; 2019) could also be a promising anticancer strategy. Louisa Temme1,3 ✉ and Christopher R. M. Asquith2,3 ✉ Ca2+ influx 1Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany. 2Department of Pharmacology, School of Medicine, Calmodulin University of North Carolina at Chapel Hill, NC, USA. MAPK 3These authors contributed equally: Louisa Temme, Christopher R. M. Asquith. PKA ✉e-mail: [email protected]; [email protected] eEF2K https://doi.org/10.1038/d41573-021-00124-5 b GSK3 Acknowledgements O O This article is part of a series from the NIH Common Fund Illuminating the Druggable Genome (IDG) program. The goal of IDG is to catalyse research on understudied N NH 2 mGluR proteins from druggable gene families by providing eEF2 eEF2 P reagents, phenotypes and a mineable database; focusing on O N N NH2 Thr56 GPCRs, kinases and ion channels. For more information, see https://druggablegenome.net/ Active Inactive Competing interests A-484954 ↑ Translation ↓ Translation The authors declare no competing interests. eEF2K IC50 = 0.28 μM elongation elongation RELATED LINKS Fig. 1 | eEF2K as an anticancer drug target. a | eEF2K signalling pathway and partners. In cancer Pharos (EEF2K): https://pharos.nih.gov/targets/eef2k cells, eEF2K activity can support cell survival in the face of nutrient deprivation by suppressing Dark Kinase Knowledgebase (EEF2K): https://darkkinome.org/ translation elongation. b | Structure of A-484954, a selective eEF2K inhibitor. kinase/EEF2K NATURE REVIEWS | DRUG DISCOVERY VOLUME 20 | AUGUST 2021 | 577 0123456789();: .
Recommended publications
  • Eef2k) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy
    International Journal of Molecular Sciences Review Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy Bin Zhang 1 , Jiamei Zou 1, Qiting Zhang 2, Ze Wang 1, Ning Wang 2,* , Shan He 1 , Yufen Zhao 2 and C. Benjamin Naman 1,* 1 Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; [email protected] (B.Z.); [email protected] (J.Z.); [email protected] (Z.W.); [email protected] (S.H.) 2 Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; [email protected] (Q.Z.); [email protected] (Y.Z.) * Correspondence: [email protected] (N.W.); [email protected] (C.B.N.) Abstract: Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The Citation: Zhang, B.; Zou, J.; Zhang, expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in Q.; Wang, Z.; Wang, N.; He, S.; Zhao, many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient Y.; Naman, C.B.
    [Show full text]
  • Supplementary Table 1
    SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee
    [Show full text]
  • Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
    cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells.
    [Show full text]
  • Structural Studies on the Interaction Between Eukaryotic Elongation Factor 2 Kinase (Eef2k) and Calmodulin (Cam)
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Natural and Environmental Sciences Structural studies on the interaction between eukaryotic elongation factor 2 kinase (eEF2K) and calmodulin (CaM) Kelly Hooper Thesis for the Degree of Doctor of Philosophy June 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Biological Sciences Doctor of Philosophy Structural studies on the interaction between eukaryotic elongation factor 2 kinase (eEF2K) and calmodulin (CaM) Kelly Hooper Eukaryotic elongation factor 2 kinase (eEF2K) critically regulates translation elongation by controlling the activity of eEF2, which catalyses the translocation reaction of the ribosome. eEF2K phosphorylates eEF2 and prevents its binding to the ribosome to inhibit translation elongation. eEF2K is activated by elevated Ca2+ levels via calmodulin (CaM), although the molecular mechanism of activation is not understood.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • Lestaurtinib
    LESTAURTINIB MIDOSTAURIN AXITINIB Tyrosine-protein kinase TIE-2 Serine/threonine-protein kinase 2Mitogen-activated protein kinase kinase kinase kinase 5 Serine/threonine-protein kinase MST2 NERATINIB SPS1/STE20-related protein kinase YSK4 SORAFENIB Dual specificity mitogen-activated protein kinase kinase 5 Proto-oncogene tyrosine-protein kinase MER Platelet-derivedTANDUTINIB growth factor receptor beta Epithelial discoidin domain-containing receptor 1 NINTEDANIB Mixed lineage kinase 7 Macrophage colonyTyrosine-protein stimulating kinasefactor receptorreceptor UFOTyrosine-protein kinase BLK Tyrosine-protein kinase LCK NILOTINIB Serine/threonine-protein kinase 10 NT-3 growth factor receptor DiscoidinMitogen-activated domain-containing protein receptor kinase 2 kinase kinase kinase 3 Tyrosine-protein kinase ABL Nerve growth factor receptor Trk-A FORETINIBEphrin type-B receptor 6 Adaptor-associated kinaseQUIZARTINIB Ephrin type-AEphrin receptor type-B receptor5 2 Mitogen-activated proteinTyrosine-protein kinase kinase kinaseTyrosine-protein kinase JAK3 kinase 2 kinase receptor FLT3 Fibroblast growth factorSerine/threonine-protein receptor 1 kinase Aurora-B Ephrin type-A receptor 8 Serine/threonine-proteinDual specificty protein kinase kinase PLK4Mitogen-activated CLK1 protein kinase kinase kinase 12 Misshapen-like kinase 1Cyclin-dependent kinase-like 2 Platelet-derivedLINIFANIB growth factor receptorEphrin alpha type-A receptor 4 c-Jun N-terminal kinaseALISERTIB 3 Serine/threonine-protein kinase SIK1 PONATINIB Dual specificity protein kinaseStem
    [Show full text]
  • Characterization of a Caspase-3-Substrate Kinome Using an N-And C-Terminally Tagged Protein Kinase Library Produced by a Cell-Free System
    Citation: Cell Death and Disease (2010) e89; doi:10.1038/cddis.2010.65 & 2010 Macmillan Publishers Limited All rights reserved 2041-4889/10 www.nature.com/cddis Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system D Tadokoro1, S Takahama2, K Shimizu1, S Hayashi1, Y Endo*,1,2,3 and T Sawasaki*,1,2,3 Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates. Cell Death and Disease (2010) 1, e89; doi:10.1038/cddis.2010.65; published online 28 October 2010 Subject Category: Immunity On the basis of the corresponding genetic sequences, 4500 caspases and their PK substrates would help clarify the human and mouse proteolytic enzymes have been predicted.1 signal-transduction events that occur during apoptosis.
    [Show full text]
  • 1 Inhibition of Mtorc1/2 Overcomes Resistance to MAPK Pathway
    Author Manuscript Published OnlineFirst on October 8, 2014; DOI: 10.1158/0008-5472.CAN-14-1392 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and Oxidative Phosphorylation in melanoma Y.N. Vashisht Gopal1,¶, Helen Rizos7, Guo Chen1, Wanleng Deng1, Dennie T. Frederick6, Zachary A. Cooper5, Richard A Scolyer7, Gulietta Pupo7, Kakajan Komurov8, Vasudha Sehgal2, Jiexin Zhang3, Lalit Patel4, Cristiano G. Pereira1, Bradley M. Broom3, Gordon B. Mills2, Prahlad Ram2, Paul D. Smith9, Jennifer A. Wargo5, Georgina V. Long7 and Michael A. Davies1, 2. Running Title: mTORC1/2 overcomes PGC1α and OxPhos-mediated resistance Keywords: melanoma, oxidative phosphorylation, PGC1alpha, MITF, mTORC1/2 1Departments of Melanoma Medical Oncology, 2Systems Biology, 3Bioinformatics, 4Pathology and 5Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX; 6Massachusetts General Hospital, MA, 7Melanoma Institute of Australia and Westmead Hospital, Sydney, Australia, 8Department of Pediatrics, University of Cincinnati, 9Astra Zeneca, Macclesfield, UK. ¶ Address for Correspondence: Department of Melanoma Medical Oncology, 1515 Holcombe Blvd, Unit 904, Houston, TX, 77030. Supported by grants from MDACC-AstraZeneca Collaborative Research Alliance and Adelson Medical Research Foundation. PDS owns stock in Astra Zeneca. 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 8, 2014; DOI: 10.1158/0008-5472.CAN-14-1392 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Metabolic heterogeneity is a key factor in cancer pathogenesis.
    [Show full text]
  • Discovery of Potent and Selective MRCK Inhibitors with Therapeutic
    Published OnlineFirst January 30, 2018; DOI: 10.1158/0008-5472.CAN-17-2870 Cancer Translational Science Research Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer Mathieu Unbekandt1, Simone Belshaw2, Justin Bower2, Maeve Clarke2, Jacqueline Cordes2, Diane Crighton2, Daniel R. Croft2, Martin J. Drysdale2, Mathew J. Garnett3, Kathryn Gill2, Christopher Gray2, David A. Greenhalgh4, James A.M. Hall3, Jennifer Konczal2, Sergio Lilla5, Duncan McArthur2, Patricia McConnell2, Laura McDonald2, Lynn McGarry6, Heather McKinnon2, Carol McMenemy4, Mokdad Mezna2, Nicolas A. Morrice5, June Munro1, Gregory Naylor1, Nicola Rath1, Alexander W. Schuttelkopf€ 2, Mairi Sime2, and Michael F. Olson1,7 Abstract The myotonic dystrophy–related Cdc42-binding kinases an autophosphorylation site, enabling development of a phos- MRCKa and MRCKb contribute to the regulation of actin–myosin phorylation-sensitive antibody tool to report on MRCKa status in cytoskeleton organization and dynamics, acting in concert with tumor specimens. In a two-stage chemical carcinogenesis model the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The of murine squamous cell carcinoma, topical treatments reduced absence of highly potent and selective MRCK inhibitors has MRCKa S1003 autophosphorylation and skin papilloma out- resulted in relatively little knowledge of the potential roles of growth. In parallel work, we validated a phospho-selective anti- these kinases in cancer. Here, we report the discovery of the body with the capability to monitor drug pharmacodynamics. azaindole compounds BDP8900 and BDP9066 as potent and Taken together, our findings establish an important oncogenic selective MRCK inhibitors that reduce substrate phosphorylation, role for MRCK in cancer, and they offer an initial preclinical proof leading to morphologic changes in cancer cells along with inhi- of concept for MRCK inhibition as a valid therapeutic strategy.
    [Show full text]
  • Transcriptome Profiling Reveals the Complexity of Pirfenidone Effects in IPF
    ERJ Express. Published on August 30, 2018 as doi: 10.1183/13993003.00564-2018 Early View Original article Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska, Anna Gungl, Jochen Wilhelm, Leigh M. Marsh, Helene Thekkekara Puthenparampil, Katharina Sinn, Miroslava Didiasova, Walter Klepetko, Djuro Kosanovic, Ralph T. Schermuly, Lukasz Wujak, Benjamin Weiss, Liliana Schaefer, Marc Schneider, Michael Kreuter, Andrea Olschewski, Werner Seeger, Horst Olschewski, Malgorzata Wygrecka Please cite this article as: Kwapiszewska G, Gungl A, Wilhelm J, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.00564-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska1,2, Anna Gungl2, Jochen Wilhelm3†, Leigh M. Marsh1, Helene Thekkekara Puthenparampil1, Katharina Sinn4, Miroslava Didiasova5, Walter Klepetko4, Djuro Kosanovic3, Ralph T. Schermuly3†, Lukasz Wujak5, Benjamin Weiss6, Liliana Schaefer7, Marc Schneider8†, Michael Kreuter8†, Andrea Olschewski1,
    [Show full text]
  • Coupled Activation and Degradation of Eef2k Regulates Protein Synthesis in Response to Genotoxic Stress
    RESEARCH ARTICLE DNA DAMAGE Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress Flore Kruiswijk,1 Laurensia Yuniati,1 Roberto Magliozzi,1 Teck Yew Low,2,3 Ratna Lim,1 Renske Bolder,1 Shabaz Mohammed,2,3 Christopher G. Proud,4 Albert J. R. Heck,2,3 Michele Pagano,5,6 Daniele Guardavaccaro1* The kinase eEF2K [eukaryotic elongation factor 2 (eEF2) kinase] controls the rate of peptide chain elon- gation by phosphorylating eEF2, the protein that mediates the movement of the ribosome along the mRNA by promoting translocation of the transfer RNA from the A to the P site in the ribosome. eEF2K-mediated phosphorylation of eEF2 on threonine 56 (Thr56) decreases its affinity for the ribosome, thereby inhibiting elongation. Here, we show that in response to genotoxic stress, eEF2K was activated by AMPK (adenosine monophosphate–activated protein kinase)–mediated phosphorylation on serine Downloaded from 398. Activated eEF2K phosphorylated eEF2 and induced a temporary ribosomal slowdown at the stage of elongation. Subsequently, during DNA damage checkpoint silencing, a process required to allow cell cycle reentry, eEF2K was degraded by the ubiquitin-proteasome system through the ubiquitin ligase SCFbTrCP (Skp1–Cul1–F-box protein, b-transducin repeat–containing protein) to enable rapid resumption of translation elongation. This event required autophosphorylation of eEF2K on a canonical bTrCP- binding domain. The inability to degrade eEF2K during checkpoint silencing caused sustained phos- http://stke.sciencemag.org/ phorylation of eEF2 on Thr56 and delayed the resumption of translation elongation. Our study therefore establishes a link between DNA damage signaling and translation elongation.
    [Show full text]
  • Ca2+/Calmodulin-Dependent Protein Kinases in Leukemia Development
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Ca2+/calmodulin-dependent Protein Kinases in Leukemia Development Changhao Cui2, Chen Wang1, Min Cao1, Xunlei Kang1* 1Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA 2School of Life Science and Medicine, Dalian University of Technology, Liaoning 124221, China *Correspondence should be addressed to Xunlei Kang; [email protected] Received date: March 18, 2021, Accepted date: April 20, 2021 Copyright: © 2021 Cui C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Ca2+/ calmodulin (CaM) signaling is important for a wide range of cellular functions. It is not surprised the role of this signaling has been recognized in tumor progressions, such as proliferation, invasion, and migration. However, its role in leukemia has not been well appreciated. The multifunctional Ca2+/CaM-dependent protein kinases (CaMKs) are critical intermediates of this signaling and play key roles in cancer development. The most investigated CaMKs in leukemia, especially myeloid leukemia, are CaMKI, CaMKII, and CaMKIV. The function and mechanism of these kinases in leukemia development are summarized in this study. Keywords: CaMKII, CaMKI, CaMKIV, Leukemia, ITIM containing receptor, Signaling pathway, Therapeutic target Introduction The classic CaMKs include CaMKI, CaMKII, and CaMKIV, each of which has multiple isoforms. They Calcium (Ca2+) is an intracellular universal second are multifunctional serine/threonine protein kinases messenger that regulates a variety of cellular processes.
    [Show full text]