Cell Death and Differentiation (1999) 6, 412 ± 419 ã 1999 Stockton Press All rights reserved 13509047/99 $12.00 http://www.stockton-press.co.uk/cdd Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis 1 ,1 Ronald J Krieser and Alan Eastman* Introduction 1 Department of Pharmacology and Toxicology, Dartmouth Medical School, Apoptosis plays a central role in such processes as Hanover, New Hampshire 03755, USA development, tissue homeostasis, and thymic selection, as * corresponding author: tel: (603)-650-1501; fax: (603)-650-1129; well as pathologies ranging from neurodegenerative disease, e-mail:
[email protected] autoimmune disorders, and viral infection, to cancer. Much research on apoptosis has focused on determining proteins involved in decisions of cell fate, and regulation of the Received 17.11.98; revised 15.2.99; accepted 2.3.99 execution phase of cell death involving protease and Edited by G. Salvesen endonuclease activation. A great deal of this information has been gained from the study of small organisms such as Abstract the nematode C. elegans, which has a well-defined developmental program during which specific cells die. The While investigating endonucleases potentially involved in characterization of nematodes with mutations in the cell death apoptosis, an antisera was raised to bovine deoxyribonu- process has led to identification of genes which regulate clease II, but it recognized a smaller protein of 26 kDa protein apoptosis.1 The mammalian homologs have been identified in a variety of cell lines. The 26 kDa protein underwent for many of these regulatory genes.