Analysis of Bacterial Communities Associated with Insect Biological Control Agents Using Molecular Techniques
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction -
Assessing Population Sizes, Biological Potential and Mass
1. ASSESSING POPULATION SIZES, BIOCONTROL POTENTIAL AND MASS PRODUCTION OF THE ROOT BORING MOTH AGAPETA ZOEGANA FOR AREWIDE IMPLEMENTATION AND MONITORING OF SPOTTED KNAPWEED BIOCONTROL 2. PRINCIPAL INVESTIGATORS: Mark Schwarzländer, PSES Department, University of Idaho, 875 Perimeter DR MS 2339, Moscow, ID 83844-2339, (208) 885-9319, FAX (208)885- 7760, [email protected]; Joseph Milan, USDI Bureau of Land Management, 3948 Development Ave., Boise, ID 83705, (208) 384-3487, FAX (208) 384-3326, [email protected]; Paul Brusven, Nez Perce Tribe Bio-Control Center, P.O. Box 365, 22776 Beaver Road, Lapwai, ID 83540, (208) 843-9374, FAX (208) 843-9373, [email protected] 3. COOPERATORS: Dr. Hariet Hinz (CABI Switzerland), Dr. Urs Schaffner (CABI Switzerland, Dr. Sanford Eigenbrode (University of Idaho), Dr. Heinz Müller-Schärer (University of Fribourg, Switzerland), Brian Marschmann (USDA APHIS PPQ State Director, Idaho), Dr. Rich Hansen (USDA APHIS CPHST, Ft. Collins, Colorado), John (Lewis) Cook (USDI BIA Rocky Mountain Region, Billings, Montana), Dr. John Gaskin (USDA ARS NPARL, Sidney, Montana), Idaho County Weed Superintendents and Idaho-based USFS land managers. BCIP CONTACT: Carol Randall, USFS Northern and Intermountain Regions, 2502 E Sherman Ave, Coeur d'Alene, ID 83814, (208) 769-3051, (208) 769-3062, [email protected] 4. REQUESTED FUNDS: USFS $100,000 (Year 1: $34,000; Year 2: $33,000; and Year 3: $33,000), Project Leveraging: University of Idaho $124,329. 5. EXECUTIVE SUMMARY: 1) The current status of ecological research suggests that albeit having some impact on spotted knapweed, both, A. zoegana and C. achates have stronger negative effects on native grasses, thus indirectly benefiting one of most devastating invasive plants in the U.S. -
Cochylini Del 2
Cochylini del 2 Agapeta, Eupoecilia, Aethes (part.) Agapeta hamana (L.) 4268 15-25 mm. Imago flyver sidst på dagen og kommer fint til lys fra maj til august (september). Ikke alle eksem- plarer er så stærkt tegnet som ovenstående. Agapeta hamana (L.) Larven lever overvintrende i i rødderne af forskellige tidsler (Carduus, Cirsium mv.). Udbredt i Europa op til Mellemsverige og Finland. Almindelig. Agapeta largana (Rebel) 4270 16-23 mm. Imago er på vingerne i solens sidste stråler fra sidst i juni gennem juli. Lokalt ikke sjælden på enge. Præimaginale stadier er ukendte. Kendt fra Grækenland, Rumænien, Ungarn, det vestlige Østrig og jeg har selv fundet den flere steder i det sydøstlige Frankrig. Agapeta zoegana (L.) 4271 15-24 mm. Imago flyver i de sidste lyse timer og kommer fint til lys i juli-august. Agapeta zoegana (L.) Larven lever overvintrende i rødderne af Blåhat (Knautia) og Knopurt (Centaurea). Den forpupper sig i rødderne. Agapeta zoegana (L.) Ind i mellem dukker eksemplarer op som er formørket i den yderste tredjedel. Disse eksemparer er gerne mindre end normalt. Agapeta zoegana (L.) I Danmark er der ikke mange findesteder i Jylland og arten mangler helt vest for israndslinjen. I det øvrige land er den ikke sjælden, men sjældent talrig. Nordgrænsen går gennem det sydligste Norge, mellemste Sverige og sydlige Finland. Arten når til Ural og Lilleasien. Eugnosta lathoniana (Hb.) 4279 21-27 mm. Imago flyver sidst på dagen fra midt i maj til sidst i juni. Præimaginale stadier er ukendte. Udbredt i det meste af Sydeuropa, mod nord til Tyskland, men herfra kendes ingen konkrete fund. -
CDA Leafy Spurge Brochure
Frequently Asked Questions About the Palisade Insectary Mission Statement How do I get Aphthona beetles? You can call the Colorado Department of We are striving to develop new, effective Agriculture Insectary in Palisade at (970) ways to control non-native species of plants 464-7916 or toll free at (866) 324-2963 and and insects that have invaded Colorado. get on the request list. We are doing this through the use of biological controls which are natural, non- When are the insects available? toxic, and environmentally friendly. We collect and distribute adult beetles in June and July. The Leafy Spurge Program In Palisade How long will it take for them to control my leafy spurge? The Insectary has been working on leafy Biological Control You can usually see some damage at the spurge bio-control since 1988. Root feeding point of release the following year, but it flea beetles are readily available for release of typically takes three to ten years to get in early summer. Three other insect species widespread control. have been released and populations are growing with the potential for future Leafy Spurge What else do the beetles feed on? distribution. All of the leafy spurge feeding The beetles will feed on leafy spurge and insects are maintained in field colonies. cypress spurge. They were held in Additional research is underway to explore quarantine and tested to ensure they would the potential use of soilborne plant not feed on other plants before they were pathogens as biocontrol agents. imported and released in North America What makes the best release site? A warm dry location with moderate leafy spurge growth is best. -
Evaluation of a Plant-Herbivore System In
EVALUATION OF A PLANT-HERBIVORE SYSTEM IN DETERMINING POTENTIAL EFFICACY OF A CANDIDATE BIOLOGICAL CONTROL AGENT, CORNOPS AQUATICUM FOR WATER HYACINTH, EICHHORNIA CRASSIPES A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by ANGELA BOWNES December 2008 Abstract Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a free- floating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. -
Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns. -
New DNA Markers Reveal Presence of Aphthona Species (Coleoptera: Chrysomelidae) Believed to Have Failed to Establish After Release Into Leafy Spurge
Biological Control 49 (2009) 1–5 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon New DNA markers reveal presence of Aphthona species (Coleoptera: Chrysomelidae) believed to have failed to establish after release into leafy spurge R. Roehrdanz a,*, D. Olson b,1, G. Fauske b, R. Bourchier c, A. Cortilet d, S. Sears a a Biosciences Research Laboratory, Red River Valley Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, 1605 Albrecht Blvd, Fargo, ND 58105, United States b Department of Entomology, North Dakota State University, Fargo, ND, United States c Agriculture and Agri-Food Canada, Lethbridge, AB, Canada d Agricultural Resources Management and Development Division - Weed Integrated Pest Management Unit, Minnesota Department of Agriculture, St. Paul, MN, United States article info abstract Article history: Six species of Aphthona flea beetles from Europe have been introduced in North America for the purpose Received 28 September 2007 of controlling a noxious weed, leafy spurge (Euphorbia esula). In the years following the releases, five of Accepted 10 December 2008 the species have been recorded as being established at various locations. There is no evidence that the Available online 31 December 2008 sixth species ever became established. A molecular marker key that can identify the DNA of the five established species is described. The key relies on restriction site differences found in PCR amplicons Keywords: of a portion of the mitochondrial cytochrome oxidase I gene. Three restriction enzymes are required to Flea beetles separate the immature specimens which are not visually separable. Adults which can be quickly sepa- Leafy spurge rated into the two black species and three brown species require only two restriction enzymes to resolve Euphorbia esula Aphthona the species. -
(Leafy Spurge), on a Native Plant Euphorbia Robusta
Non-target impacts of Aphthona nigriscutis, a biological control agent for Euphorbia esula (leafy spurge), on a native plant Euphorbia robusta John L. Baker, Nancy A.P. Webber and Kim K. Johnson1 Summary Aphthona nigriscutis Foudras, a biological control agent for Euphorbia esula L. (leafy spurge), has been established in Fremont County, Wyoming since 1992. Near one A. nigriscutis release site, a mixed stand of E. esula and a native plant, Euphorbia robusta Engelm., was discovered in 1998. During July of 1999, A. nigriscutis was observed feeding on both E. esula and E. robusta. A total of 31 E. robusta plants were located and marked on about 1.5 ha of land that had an E. esula ground-cover of over 50%. Eighty-seven percent of the E. robusta plants showed adult feeding damage. There was 36% mortality for plants with heavy feeding, 12% mortality for plants with light feeding, and no mortality for plants with no feeding. By August of 2002, the E. esula ground-cover had declined to less than 6% and the E. robusta had increased to 542 plants of which only 14 plants (2.6%) showed any feeding damage. For the four-year period, the E. esula ground-cover was inversely correlated to E. robusta density and posi- tively correlated to A. nigriscutis feeding damage, showing that as E. esula density declines so does Aphthona nigriscutis feeding on E. robusta. Keywords: Aphthona, density, Euphorbia, mortality, non-target impacts. Introduction established populations. These sites were monitored annually to assess the establishment of the bioagents. A parcel of land 4.8 km (3 miles) south-west of Lander, There was a strong contrast between the Majdic land Fremont County, Wyoming has been infested with and the Christiansen properties where the insects were Euphorbia esula (leafy spurge) for over 30 years. -
Montana Knapweeds
Biology, Ecology and Management of Montana Knapweeds EB0204 revised August 2017 Celestine Duncan, Consultant, Weed Management Services, Helena, MT Jim Story, Research Professor, retired, MSU Western Ag Research Center, Corvallis, MT Roger Sheley, former MSU Extension Weed Specialist, Bozeman, MT revised by Hilary Parkinson, former MSU Research Associate, and Jane Mangold, MSU Extension Invasive Plant Specialist Table of Contents Plant Biology . 3 SpeedyWeed ID . 5 Ecology . 4 Habitat . 4 Spread and Establishment Potential . 6 Damage Potential . 7 Origins, Current Status and Distribution . 8 Management Alternatives . 8 Prevention . 8 Mechanical Control . .9 Cultural Control . .10 Biological Control . .11 Chemical Control . .14 Integrated Weed Management (IWM) . 16 Additional Resources . 17 Acknowledgements . .19 COVER PHOTOS large - spotted knapweed by Marisa Williams, University of Arkansas, Fayetteville, bugwood.org top inset - diffuse knapweed by Cindy Roche, bugwood.org bottom inset - Russain knapweed by Steve Dewey, Utah State University, bugwood.org Any mention of products in this publication does not constitute a recommendation by Montana State University Extension. It is a violation of Federal law to use herbicides in a manner inconsistent with their labeling. Copyright © 2017 MSU Extension The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Jeff Bader, Director of Extension, Montana State University, Bozeman, MT 59717. -
Inundative Release of Aphthona Spp. Flea Beetles (Coleoptera: Chrysomelidae) As a Biological "Herbicide" on Leafy Spurge in Riparian Areas
Inundative Release of Aphthona spp. Flea Beetles (Coleoptera: Chrysomelidae) as a Biological "Herbicide" on Leafy Spurge in Riparian Areas 5 R. A. PROCAR,l G. MARKIN,2 J. MILAN T. BARBOULETOS,3 AND M. J. RINELLA ABSTRACT Inundative releases of beneficial insects are frequently used to suppress pest insects but not commonly attempted as a method of weed biological control because of the difficulty in obtaining the required large numbers of insects. The successful establishment of a flea beetle complex, mixed Aphthona lacertoea (Rosenhauer) and Aphthona nigriscutus Foundras (87 and 13%, respectively), for the control of leafy spurge, Euphorbia esula L, provided an easily collectable source of these natural enemies that enabled us to attempt inundative release as a possible leafy spurge control method in a sensitive riparian ecological zone where chemical control is restricted. Our target weed populations were small isolated patches of leafy spurge along three streams in southwestern, central, and north- eastern Idaho. This study assessed leafy spurge and associated vegetation responses to Inundative releases of 10 and 50 beetles per spurge flowering stem over two consecutive years. Releasing 10 beetles per flowering stem had inconclusive effects on spurge biomass, crown, stem, and seedling density. Alternatively, releasing 50 beetles per flowering stem resulted in a reduction of biomass, crown and stem density in the range of 60-80% at all three study sites, and about an =60% reduction of seedling density at one site, compared with untreated plots. In contrast to leafy spurge, associated vegetation did not conclusively respond to beetle release, indicating that it may take more than two years for desired riparian vegetation to respond to reductions in leafy spurge competition. -
Lepidoptera: Tortricidae)
1 A molecular phylogeny of Cochylina, with confirmation of its relationship to Euliina 2 (Lepidoptera: Tortricidae) 3 4 John W. Brown*1, Leif Aarvik2, Maria Heikkilä3, Richard Brown4, and Marko Mutanen5 5 6 1 National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, e-mail: 7 [email protected] 8 2 Natural History Museum, University of Oslo, Norway, e-mail: [email protected] 9 3 Finnish Museum of Natural History, LUOMUS, University of Helsinki, Helsinki, 00014, 10 Finland, e-mail: [email protected] 11 4 Mississippi Entomological Museum, Mississippi State, MS 39762, USA, e-mail: 12 [email protected] 13 5 Ecology and Genetics Research Unit, PO Box 3000, 90014, University of Oulu, Finland, e- 14 mail: [email protected] 15 *corresponding author 16 17 This is the peer reviewed version of the following article: Brown, J.W., Aarvik, L., Heikkilä, M., 18 Brown, R. and Mutanen, M. (2020), A molecular phylogeny of Cochylina, with confirmation of its 19 relationship to Euliina (Lepidoptera: Tortricidae). Syst Entomol, 45: 160-174., which has been 20 published in final form at https://doi.org/10.1111/syen.12385. 21 1 22 Abstract. We conducted a multiple-gene phylogenetic analysis of 70 species representing 24 23 genera of Cochylina and eight species representing eight genera of Euliina, and a maximum 24 likelihood analysis based on 293 barcodes representing over 220 species of Cochylina. The 25 results confirm the hypothesis that Cochylina is a monophyletic group embedded within a 26 paraphyletic Euliina. We recognize and define six major monophyletic lineages within 27 Cochylina: a Phtheochroa Group, a Henricus Group, an Aethes Group, a Saphenista Group, a 28 Phalonidia Group, and a Cochylis Group. -
Biology and Morphology of Immature Stages of Coniocleonus Nigrosuturatus (Coleoptera: Curculionidae: Lixinae)
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.iv.2014 Volume 54(1), pp. 337–354 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:D1FF3534-A1C8-4B2B-ACDF-69F31ED12BC0 Biology and morphology of immature stages of Coniocleonus nigrosuturatus (Coleoptera: Curculionidae: Lixinae) Robert STEJSKAL1), Filip TRNKA2) & JiĜí SKUHROVEC3) 1) Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, ZemČdČlská 1, CZ-613 00 Brno, & Administration of Podyji National Park, Na Vyhlídce 5, CZ-669 02 Znojmo, Czech Republic; e-mail: [email protected] 2) Department of Ecology & Environmental Sciences, Faculty of Science, Palacký University Olomouc, TĜ. Svobody 26, CZ-771 46 Olomouc, Czech Republic; e-mail: ¿ [email protected] 3) Group Function of invertebrate and plant biodiversity in agro-ecosystems, Crop Research Institute, Drnovská 507, CZ-161 06 Praha 6 – RuzynČ, Czech Republic; e-mail: [email protected] Abstract. Mature larvae and pupae of Coniocleonus (Plagiographus) nigrosutura- tus (Goeze, 1777) (Curculionidae: Lixinae: Cleonini) are described and compared with three other cleonine taxa with known larvae. The biology of the species was studied in Romania, Hungary and Slovakia. Common Stork’s-bill (Erodium cicu- tarium) (Geraniaceae) is identi¿ ed as a host plant of both larvae and adults of this weevil. The weevil is very likely monophagous, and previous records of thyme (Thymus sp., Lamiaceae) as the host plant hence appear incorrect. Coniocleonus nigrosuturatus prefers dry, sunny places in grassland habitats, with sparse vegeta- tion, bare ground and patchily growing host plants. Overwintering beetles emerge in early spring (March), feed and mate on the host plants. The highest activity of adults was observed from mid-April to mid-May.