CDA Leafy Spurge Brochure

Total Page:16

File Type:pdf, Size:1020Kb

CDA Leafy Spurge Brochure Frequently Asked Questions About the Palisade Insectary Mission Statement How do I get Aphthona beetles? You can call the Colorado Department of We are striving to develop new, effective Agriculture Insectary in Palisade at (970) ways to control non-native species of plants 464-7916 or toll free at (866) 324-2963 and and insects that have invaded Colorado. get on the request list. We are doing this through the use of biological controls which are natural, non- When are the insects available? toxic, and environmentally friendly. We collect and distribute adult beetles in June and July. The Leafy Spurge Program In Palisade How long will it take for them to control my leafy spurge? The Insectary has been working on leafy Biological Control You can usually see some damage at the spurge bio-control since 1988. Root feeding point of release the following year, but it flea beetles are readily available for release of typically takes three to ten years to get in early summer. Three other insect species widespread control. have been released and populations are growing with the potential for future Leafy Spurge What else do the beetles feed on? distribution. All of the leafy spurge feeding The beetles will feed on leafy spurge and insects are maintained in field colonies. cypress spurge. They were held in Additional research is underway to explore quarantine and tested to ensure they would the potential use of soilborne plant not feed on other plants before they were pathogens as biocontrol agents. imported and released in North America What makes the best release site? A warm dry location with moderate leafy spurge growth is best. For example; a south facing slope out of the trees. The beetles will establish in less than optimal sites, but it usually takes longer. How do I release them? For more information on the Leafy Spurge After you select a site, simply open the biocontrol program at the Insectary, please bag/container and release all the beetles in write or call: one area. They will disperse themselves. Dan Nees, Ag Program Specialist Division of Conservation Services 750 37.8 Road Biological Pest Control Division Palisade, CO 81526 (970) 464-7916 Toll free (866) 324-2963 [email protected] Palisade Insectary What is Leafy Spurge? Release Success Biological Control of Leafy Spurge Leafy spurge, Euphorbia esula, is thought to have originated in Asia and was discovered To help control leafy spurge, the Colorado The leafy spurge project has had much in Massachusetts in Department of Agriculture success in its efforts to control the leafy spurge 1827. Currently, leafy initiated a biological throughout Colorado. The Aphthona beetles spurge is found in control program using a are great examples of how biological control every northern state number of plant feeding can work. To date there have been thousands with severe infestations insects. The most of successful release sites and over a million in Colorado where it is A species of flea beetle effective of these are five acres reclaimed. Research on this system is a prohibited, perennial, species of flea beetles; Aphthona nigriscutis, ongoing, not only to ensure continued success, Leafy spurge noxious weed. The Aphthona czwalinae, Aphthona lacertosa, but to increase the success rate and reclaim white, milky latex that Aphthona flava, and Aphthona cyparissiae. more of Colorado’s agricultural and is present in all parts of the plant causes As larvae, the flea beetles feed on the roots; recreational areas. severe irritation of the mouth and digestive as adults they feed on the leaves. Heavy tract in cattle. Because of this, cattle avoid larval feeding damage is sufficient to kill the grazing where leafy spurge is present. plant. Leafy spurge can reproduce from seeds or vegetatively from buds on its extensive root Aphthona Flea Beetle Life Cycle system. The seeds are contained in capsules that explode when dry - projecting Egg laying adult them as far as fifteen feet from the plant. Aphthona beetles These seeds can remain viable for up to are collected from seven years in the soil. infested plants in June and July A 1990 study conducted by North Dakota and released in State University estimated the direct annual uninfested A large collection of beetles Leafy spurge site in Rio Blanco County before financial impact in North Dakota, South patches of leafy beetle release (1989) Dakota, Montana, and Wyoming to be $40.5 spurge. The adults lay million. The most effective herbicides for their eggs on or near controlling leafy spurge are very expensive the crown of the plant. and require repeated application to After the eggs hatch effectively control leafy spurge. In addition, the larvae move into these the soil to feed on the herbicides root hairs and small have restricted roots. The larvae use due to the overwinter in the soil. detrimental The following spring effects they the larvae finish have on the feeding then migrate environment. A leafy spurge covered to the crown of the with beetles Hillside infested with leafy spurge plants to pupate and Leafy spurge site in Rio Blanco County after finally emerge as adults in June and July. beetle release (1999) .
Recommended publications
  • Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
    OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction
    [Show full text]
  • Are All Flea Beetles the Same?
    E-1274 Are All Phyllotreata cruciferae Flea Beetles Crucifer Flea Beetle Versus the Same? Leafy Spurge Flea Beetles Denise L. Olson Assistant Professor, Entomology Dept. Janet J. Knodel Extension Crop Protection Specialist, NCREC, NDSU Aphthona lacertosa “FLEA BEETLE” is a common name describing many species of beetles that use their enlarged hind legs to jump quickly when disturbed. The adults feed on the leaves of their host plants. Heavily fed-on leaves have a shot-hole appearance. The larvae (wormlike immature stage) usually feed on the roots of the same host plants as adults. Common flea beetles that occur in North Dakota include the Flea beetles crucifer flea beetle (Phyllotreata cruciferae) and the leafy spurge have enlarged flea beetles (Aphthona species). The crucifer flea beetle is a hind legs that non-native insect pest that accidentally was introduced into they use to jump North America during the 1920s. Phyllotreata cruciferae now quickly when can be found across southern Canada and the northern Great disturbed. Plains states of the United States. The leafy spurge flea beetles are non-native biological control agents and were introduced for spurge control beginning in the mid-1980s. These biological control agents have been released in the south-central prov- inces of Canada and in the Upper Great Plains and Midwest Crucifer flea beetle is states of the United States. Although P. cruciferae and Aphthona an exotic insect pest. species are both known as flea beetles and do look similar, they differ in their description, life cycle and preference of host plants. Leafy spurge flea beetle species are introduced biological control North Dakota State University, Fargo, North Dakota 58105 agents.
    [Show full text]
  • Altica Tombacina</Em>
    Linfield University DigitalCommons@Linfield Jane Claire Dirks-Edmunds Documents Jane Claire Dirks-Edmunds Collection 1965 Habits and Life History of the Bronze Flea Beetle, Altica tombacina (Mannerheim) (Coleoptera-Chrysomelidae) Jane C. Dirks-Edmunds Follow this and additional works at: https://digitalcommons.linfield.edu/jcde_docs Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Dirks-Edmunds, Jane C., "Habits and Life History of the Bronze Flea Beetle, Altica tombacina (Mannerheim) (Coleoptera-Chrysomelidae)" (1965). Jane Claire Dirks-Edmunds Documents. Published Version. Submission 24. https://digitalcommons.linfield.edu/jcde_docs/24 This Published Version is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Published Version must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Habits and Life History of the Bronze Flea Beetle, Attica tombacina (Mannerheim) ( Coleoptera -Chrysomelidae) JANE C. DIRKS-EDMUNDS Department of Biology, Linfield College McMinnville, Oregon N THE summer of 1959 during an ecological study on Saddleback Moun­ I tain in the Oregon Coast Range in Northwestern Oregon, a bronze flea beetle, which proved to be Altica tombacina (Mannerheim), was found feed­ ing extensively on the fireweed plant, Epilobium angustifolium L. Corres­ pondence with Dr. Louis G. Gentner, a recognized authority on the genus Altica, concerning identification of the beetle disclosed that very little was known about the life history or habits of this species.
    [Show full text]
  • Biological Control of Paterson's Curse with the Tap-Root Flea Beetle (DSE Vic)
    January 1999 Biological control of Paterson's curse LC0155 with the taproot flea beetle ISSN 1329-833X Keith Turnbull Research Institute, Frankston Common and scientific names laying within a few weeks. Some adults may survive until late in spring. Paterson’s curse taproot flea beetle Eggs are laid on and around the crown of the plant. Larvae Longitarsus echii Koch (grubs) hatch after about three weeks, depending on the Family Chrysomelidae, leaf beetles environmental temperature. Background The larvae initially feed on the plant crown and leaf stalks, and then descend into the taproot where they feed Paterson’s curse (Salvation Jane), Echium plantagineum, is internally. After three months the larvae leave the root and a noxious weed of European origin found through much of pupate in the soil. Around one month later, they transform Victoria. It is a Regionally Controlled Weed in all into adults, which remain inactive in earthen cells in the Victorian Catchment and Land Protection Regions except soil until winter. Mallee. Landholders in these areas must take all reasonable steps to control and prevent the spread of this weed on their land and the roadsides which adjoin their land. A national program for biological control of Paterson’s curse involves the establishment of populations of the weed’s natural enemies and the redistribution of them to other sites as populations increase. A cooperative project between CSIRO and DNRE has led to the release of the Paterson’s curse taproot feeding flea beetle, Longitarsus echii, in Victoria. The flea beetle has been tested to ensure it is specific to Paterson’s curse and presents no danger to native plants or plants of economic importance.
    [Show full text]
  • Corn Flea Beetle
    Pest Profile Photo credit: North Central Branch-Entomological Society of America, UNL-Entomology Extension Common Name: Corn flea beetle Scientific Name: Chaetocnema pulicaria Order and Family: Coleoptera, Chrysomelidae Size and Appearance: Length (mm) Appearance white have a pointy end Egg ~0.35 darken slightly in color before hatching white slimly shaped Larva/Nymph < 9 cylindrical prothorax and last abdominal segment are slightly darkened small shiny black Adult < 2 enlarged hind legs white Pupa (if soft in texture applicable) gets dark before development is complete Type of feeder (Chewing, sucking, etc.): Chewing mouthparts Host plant/s: Corn is the preferred host plant, but they are also found on a number of different grass types, oats, Timothy, barley and wheat. Description of Damage (larvae and adults): The adult corn flea beetle injures corn plants by removing leaf tissue and by transmitting pathogenic bacteria. Injury by the adults appears as scratches in the upper and lower surfaces of the leaf, usually parallel to the veins. They feed on both the upper and the lower epidermis of corn leaves, but they do not chew completely through the leaves. The scratches rarely result in economy injury. The leaves of severely injured plants appear whitish or silvery. More importantly, the beetles transmit the bacterium Erwinia stewartia, the casual organism of Stewart’s wilt, to susceptible varieties of corn. Field corn infested with Stewart’s disease will show little sign of disease until late in the summer when numerous leaf lesions will appear on the leaves. The result is often small ears or no ears at all.
    [Show full text]
  • The Effect of Aphthona Whitfieldi (Coleoptera: Chrysomelidae) Populations’ Density on the Growth of Jatropha Curcas in Burkina Faso
    Advances in Entomology, 2017, 5, 127-137 http://www.scirp.org/journal/ae ISSN Online: 2331-2017 ISSN Print: 2331-1991 The Effect of Aphthona whitfieldi (Coleoptera: Chrysomelidae) Populations’ Density on the Growth of Jatropha curcas in Burkina Faso Alizèta Sawadogo1,2, Souleymane Nacro1,3 1Fasobiocarburant, Léo, Burkina Faso 2Crops department, IDR, Nazi Boni University of Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso 3INERA, CREAF of Kamboinsé, Ouagadougou, Burkina Faso How to cite this paper: Sawadogo, A. and Abstract Nacro, S. (2017) The Effect of Aphthona whitfieldi (Coleoptera: Chrysomelidae) Aphthona whitfieldi Bryant (Coleoptera: Chrysomelidae) is a major insect Populations’ Density on the Growth of pest of Jatropha curcas L. in Burkina Faso. This study aimed at evaluating the Jatropha curcas in Burkina Faso. Advances effect of the insect pest populations’ density on the growth of the plant. To in Entomology, 5, 127-137. achieve this purpose, 90-day aged single plants were caged in a randomized https://doi.org/10.4236/ae.2017.54013 complete block design experiment with 5 treatments and 5 replicates. The Received: August 8, 2017 treatments consisted of increasing numbers of adults of A. whitfieldi used to Accepted: October 16, 2017 infest the caged plants: T0 (0 adult = check), T1 (100 adults), T2 (200 adults), Published: October 19, 2017 T3 (300 adults), T4 (400 adults). All caged plants were infested 21 days after transplantation and the evaluation started 14 days later one on every 2-week Copyright © 2017 by authors and Scientific Research Publishing Inc. basis from September 18, 2014 to February 19, 2015. The growth parameters This work is licensed under the Creative of the plant were assessed.
    [Show full text]
  • The Life History and Management of Phyllotreta Cruciferae and Phyllotreta Striolata (Coleoptera: Chrysomelidae), Pests of Brassicas in the Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2004 The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States. Caryn L. Andersen University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Andersen, Caryn L., "The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States." (2004). Masters Theses 1911 - February 2014. 3091. Retrieved from https://scholarworks.umass.edu/theses/3091 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2004 Entomology © Copyright by Caryn L. Andersen 2004 All Rights Reserved THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Approved as to style and content by: Tt, Francis X. Mangan, Member Plant, Soil, and Insect Sciences DEDICATION To my family and friends. ACKNOWLEDGMENTS I would like to thank my advisors, Roy Van Driesche and Ruth Hazzard, for their continual support, encouragement and thoughtful advice.
    [Show full text]
  • Agent: Flea Beetle Longitarsus Jacobaeae Plant Species Attacked: Tansy Ragwort Senecio Jacobaea
    Agent: Flea beetle Plant species attacked: Tansy ragwort Longitarsus jacobaeae Senecio jacobaea Impact on target plant: The adults feed on the foliage and cause significant mortality of rosettes during the winter months. The larvae feed in the roots and the leaf petioles. Collection and release: Use a motorized vacuum unit to suck adults from rosettes in the fall. Releases of 100-500 are recommended. Because the beetle is so widespread, redistribution in western Oregon is unnecessary. Distribution: The beetle has been released in 24 Oregon counties and is established in 21. History: The ragwort flea beetle Longitarsus jacobaeae, introduced in 1971, the workhorse of the ragwort program, has reduced ragwort density by 95% in western Oregon. The combination of the cinnabar moth and flea beetle has nearly eliminated large outbreaks of flowering ragwort in many areas in western Oregon. Occasional flare-ups of ragwort reoccur, but the insects usually control the plants within a couple of years. Plant competition is an important factor in maintaining biocontrol of ragwort. In 2007, cooperative research project with Dr. Mark Schwarzländer and staff (U of ID), looked into the feasibility of using the Swiss biotype of the flea beetle to control infestations in Eastern Oregon, where the Italian biotype is ineffective. Releases of the Swiss biotype were made in Umatilla County in 2007 and in Umatilla and Union Counties in 2008. The insect readily established in similar habitats in Idaho and Montana. Monitoring in 2010 and 2011 for the Swiss biotype did not show that that the beetles established in eastern Oregon. Flea beetle populations can exist where host densities are low.
    [Show full text]
  • Petition for the Release of Aphthona Cyparissiae Against Leafy Spurge in the United States1
    Reprinted with permission from: USDA-ARS, March 19, 1986, unpublished. Petition for the release of Aphthona cyparissiae against leafy spurge in the 1 United States ROBERT W. PEMBERTON Part I TO: Dr. R. Bovey, Dept. of Range Science USDA/ARS/SR Texas A&M University College Station, TX 77843 U.S.A. Enclosed are the results of the research on the flea beetle Aphthona cyparissiae (Chrysomelidae). This petition is composed of two parts. The first is the report “Aph- thona cyparissiae (Kock) and A. flava Guill. (Coleopera: Chrysomelidae): Two candi- dates for the biological control of cypress and leafy spurge in North America” by G. Sommer and E. Maw which the Working Group reviewed on Canada’s behalf. Copies of this report should be in the Working Group’s files. This research, which was done at the Commonwealth Institute of Biological Control’s Delémont, Switzerland lab, showed A. cyparissiae to be specific to the genus Euphorbia of the Euphorbiaceae. This result agrees with the literature and field records for A. cyparissiae, which recorded it from: Euphorbia cyparissias, E. esula, E. peplus, E. seguieriana, and E. virgata. The Sommer and Maw report also included information on A. cyparissiae’s taxonomic position, life history, laboratory biology, mortality factors, feeding effects on the host plants, the Harris scoring system, as well as a brief description of the target plant – leafy spurge (Euphorbia esula complex), a serious pest of the rangelands of the Great Plains of North America. Based on this research, the Working Group gave permission to release A. cyparissiae in Canada and to import it into the USDA’s Biological Control of Weeds Quarantine in Al- bany, California, for additional testing.
    [Show full text]
  • Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
    A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism.
    [Show full text]
  • Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
    Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.
    [Show full text]
  • New DNA Markers Reveal Presence of Aphthona Species (Coleoptera: Chrysomelidae) Believed to Have Failed to Establish After Release Into Leafy Spurge
    Biological Control 49 (2009) 1–5 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon New DNA markers reveal presence of Aphthona species (Coleoptera: Chrysomelidae) believed to have failed to establish after release into leafy spurge R. Roehrdanz a,*, D. Olson b,1, G. Fauske b, R. Bourchier c, A. Cortilet d, S. Sears a a Biosciences Research Laboratory, Red River Valley Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, 1605 Albrecht Blvd, Fargo, ND 58105, United States b Department of Entomology, North Dakota State University, Fargo, ND, United States c Agriculture and Agri-Food Canada, Lethbridge, AB, Canada d Agricultural Resources Management and Development Division - Weed Integrated Pest Management Unit, Minnesota Department of Agriculture, St. Paul, MN, United States article info abstract Article history: Six species of Aphthona flea beetles from Europe have been introduced in North America for the purpose Received 28 September 2007 of controlling a noxious weed, leafy spurge (Euphorbia esula). In the years following the releases, five of Accepted 10 December 2008 the species have been recorded as being established at various locations. There is no evidence that the Available online 31 December 2008 sixth species ever became established. A molecular marker key that can identify the DNA of the five established species is described. The key relies on restriction site differences found in PCR amplicons Keywords: of a portion of the mitochondrial cytochrome oxidase I gene. Three restriction enzymes are required to Flea beetles separate the immature specimens which are not visually separable. Adults which can be quickly sepa- Leafy spurge rated into the two black species and three brown species require only two restriction enzymes to resolve Euphorbia esula Aphthona the species.
    [Show full text]