Developmental Regulation of the Drug-Processing Genome

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Regulation of the Drug-Processing Genome DEVELOPMENTAL REGULATION OF THE DRUG-PROCESSING GENOME IN MOUSE LIVER By Julia Yue Cui B.S., Chukechen Honors College, Zhejiang University, 2005 Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Committee Curtis Klaassen, Ph.D. (Chair) Yu-Jui Yvonne Wan, Ph.D. Bruno Hagenbuch, Ph.D. Grace Guo, Ph.D. Lane Christenson, PhD. Date defended: The Dissertation Committee for Julia Yue Cui certifies that this is the approved version of the following dissertation: DEVELOPMENTAL REGULATION OF THE DRUG-PROCESSING GENOME IN MOUSE LIVER Dissertation Committee Curtis Klaassen, Ph.D. (Chair) Yvonne Wan, Ph.D. Bruno Hagenbuch, Ph.D. Grace Guo, Ph.D. Lane Christenson, PhD. Date approved: ii ACKNOWLEDGEMENTS I would like to acknowledge my dissertation committee, Drs. Curtis Klaassen, Yu-Jui Yvonne Wan, Bruno Hagenbuch, Grace Guo, and Lane Christenson for their insightful suggestions and constructive criticisms to improve my dissertation. I am very grateful to my academic father, Dr. Curtis Klaassen, for introducing me to the world of toxicology, for his guidance and enthusiasm in my research, and endless support of my PhD studies. He always encourages me to do the most and best I can for my career. From him, not only have I learnt how to do good science, but also how to be a good scientist and educator. He is the person I trust the most in my career, the person I find confidence from always, and the person I will be eternally grateful for the rest of my life. I would like to acknowledge all the faculty members of the Department of Pharmacology, Toxicology, and Therapeutics for their help and advice. I would like to especially thank Dr. Thomas Pazdernik for his help with my course work. I would like to thank all the present and past members in Dr. Curtis Klaassen’s laboratory for their help and contribution to my research, especially Drs. Lauren Aleksunes, Yuji Tanaka, Xingguo Cheng, and Cheryl Rockwell. I would also like to acknowledge Dr. Sumedha Gunewardena from the Kansas Intellectual and Developmental Disabilities Research Center, who has collaborated with me on one of my research projects. I would like to acknowledge all the department staff and my fellow graduate students for their generous assistance during the past five years. iii TABLE OF CONTENTS Chapter I. General introduction and background………………………………….1 Chapter II. Statement of purpose...………………………………………………….40 Chapter III. Experimental materials and methods……………………43 Chapter IV. Global picture of the ontogeny of critical drug-processing genes and regulatory factors in liver development……………………...…...67 Chapter V. The ontogeny of novel cytochrome P450 gene isoforms during postnatal liver maturation in mice..........………….……...…………..87 Chapter VI. Genetic and epigenetic regulation and expression signatures of glutathione S-transferases in developing mouse liver …………....127 Chapter VII. Developmental regulation of liver transporters in mice Part I. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice …….…………………………………………………………..…....157 Part II. Regulation of xenobiotic transporters by PXR..……………………...198 Chapter VIII. Ontogenic regulation of transcription factors Ahr, PPARα and PGC-1α in mouse liver………………………………………………212 Chapter IX. General summary and conclusions...……………………….……..259 Chapter X. References………………..……………………………………….....263 Appendices………………………..…………………………………………………297 iv LIST OF ABBREVIATIONS Abbreviation Full name Abcg5 ATP binding cassette g5 Abcg8 ATP binding cassette g8 AhR Aryl hydrocarbon receptor Aldh Aldehyde dehydrogenase ARNT AhR nuclear translocator Asbt Apical sodium-dependent bile acid transporter Bcrp Breast cancer resistance protein bDNA Branched DNA Bsep Bile-salt export pump CA Cholic acid CAR Constitutive androstane receptor ChIP Chromatin immunoprecipitation Chr Chromosome Cnt Concentrative nucleoside transporter Cyp Cytochrome P450 enzymes DCA Deoxycholic acid EHC Enterohepatic circulation Ent Equilibrative nucleoside transporter Fgf15 Fibroblast growth factor 15 FgfR4 Fibroblast growth factor receptor 4 FXR Farnesoid X receptor GADD45 Growth arrest and DNA damage Gapdh Glyceraldehyde-3-phosphate dehydrogenase Gst Glutathione S-transferase H3K27Me3 Trimethylation of H3 at lysine-27 H3K4Me2 Dimethylation of histone H3 at lysine-4 IGB Integrated genome browser HSP90 Heat shock protein 90 LC-MS Liquid chromatography-mass spectrometry LCA Lithocholic acid lit/lit mice Mice with a spontaneous mutation in the growth-hormone releasing-hormone receptor Mate Multidrug and toxin extrusion protein MCA Muricholic acid Mdr Multidrug resistance protein Mrp Multidrug resistance-associated protein NcoR1 Nuclear receptor co-repressor 1 Nrf2 Nuclear factor erythroid 2-related factor 2 Ntcp Na+-taurocholate cotransporting polypeptide Oat Organic anion transporter Oatp Organic anion transporting polypeptide Oct Organic cation transporter Ost Organic solute transporter RT-qPCR Reverse transcription-quantitative polymerase chain reaction PGC-1 Peroxisome proliferator-activated-γ coactivator 1 PPAR Peroxisome proliferator-activated receptor PXR Pregnane X receptor RLU Relative light units RXR Retinoid-X-receptor SHP Small heterodimer partner SRC-1 Steroid receptor coactivator-1 Sult Sulfotransferase TAS Affymetrix Tiling Analysis Software T-BA Taurine-conjugated bile acid TR Thyroid hormone receptor v Abbreviation Full name (Cont’d) TSS Transcriptional start site UDCA Ursodeoxycholic acid Ugt UDP-glucuronosyltransferase UTR Untranslated region VDR Vitamin D receptor (Gonzalez et al., 1986; Omiecinski et al., 1990; Krauer and Dayer, 1991; Pineau et al., 1991; Tee et al., 1992; Bammler et al., 1994; Girard et al., 1994; Hayes and Pulford, 1995; Board et al., 1997; Hakkola et al., 1998; Knapen et al., 1999; Raijmakers et al., 2001; Bird, 2002; Buist et al., 2002; Kliewer et al., 2002; Li et al., 2002; Satoh et al., 2002; Slitt et al., 2002; Sonoda et al., 2002; Jaenisch and Bird, 2003; Zielinska et al., 2004; Bernstein et al., 2005; Boyer et al., 2006; Hawkins and Ren, 2006; Johnson et al., 2006; Lee et al., 2006; Roh et al., 2006; Barski et al., 2007; Kiefer, 2007; Knight et al., 2007; Kouzarides, 2007; Reik, 2007; Knight et al., 2008; Yijia et al., 2008; Cui et al., 2009b; Townsend et al., 2009; Yeager et al., 2009) vi LIST OF TABLES Table 1.1. List of critical drug-processing genes and transcription factors in liver.........11 Table 1.2. List of subfamily members of nuclear receptors............................................17 Table 1.3. Some transcriptional activating and repressing histone modifications..........31 Table 3.1. The human homologs for the mouse Cyps (if present), as well as their DNA and protein identities.……..…….……..…………………………………..45 Table 3.2. The Cyp gene names, accession numbers, and the panel information for the multiplex branched amplification technology…...…….………………..48 Table 3.3. Cyp gene names, accession numbers, and the forward and reverse primer sequences for RT-PCR….……..………………………………………..50 Table 3.4. Oligonucleotide probes generated for analysis of mouse FXR and SHP mRNA by bDNA.…..….…………………………………………………….54 Table 6.1. Consensus PXR-DNA binding motifs within the ChIP-DNA sequences for PXR...…..…...………………………………………………………………..143 vii LIST OF FIGURES Figure 1.1. Illustration of phase-I and -II drug metabolism as well as transporters in liver………………………………………………………………………………...2 Figure 1.2. The hierarchy of organization from chromosome to nucleosome................27 Figure 4.1. Developmental expression of drug-processing genes in mouse liver……..69 Figure 4.2. The ontogeny of transcription factors in mouse liver during development...71 Figure 4.3. Relative enrichment of epigenetic marks (H3K4Me2, H3K27Me3, and DNAMe) on representative chromosomes (chr5, 12, and 15) during mouse liver development…….………………...……………………………….73 Figure 4.4. Western blot of tissue distribution of H3K4Me2 (A) as well as immunofluorescence staining of H3K4Me2 during mouse liver development (B)……………………………………………………………..….74 Figure 4.5. A roadmap of enrichment in hepatic PXR-DNA binding in the entire mouse genome………………………….……………………………………….76 Figure 4.6. Motif analysis of PXR-DNA binding profiles in mouse liver………………....78 Figure 4.7. A diagram of the helical turns of DNA and the formation of DR-(5n+4) like DNA motifs……………………………………………………………………….80 Figure 4.8. Quantification of PXR binding to DR-(5n+4)-like DNA sequences by ELISA-based transcription factor binding assays……………….……………83 Figure 4.9. An overlay between PXR-DNA binding and presence of three epigenetic marks (H3K4Me2, H3K27Me3, and DNAMe) on representative chromosomes (chr5, 12, and 15) in mouse liver…….…………………….....85 Figure 5.1. Genomic locations of Cyp gene cluster within the first 4 families..…………95 Figure 5.2. The mRNA ontogenic expression of the Cyp1 family (Cyp1a1, 1a2, and 1b1), and most of the Cyp2 family (Cyp2a4, 2a5, 2a22, 2b9, 2b10, 2b13, 2b19, 2b23, 2c29, 2c37, 2c38, 2c39, 2c40, 2c44, 2c50, 2c54, and 2c55) viii in male and female livers from day -2 to day 45 of age……...……………...97 Figure 5.3. The mRNA ontogenic expression of most of the Cyp2 family (Cyp2c66, 2c67, 2c68, 2c69, 2c70, 2d9, 2d10, 2d11, 2d12, 2d22, 2d26, 2d34, 2d40, 2e1, 2f2, 2g1, 2j5, 2j6, 2j7, and 2j8) in male and female livers from day -2 to day 45 of age……………………………………………...…...100
Recommended publications
  • UNIVERSITY of CALIFORNIA, SAN DIEGO The
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Daniel Choi Yee Committee in charge: Professor Milton H. Saier Jr., Chair Professor Yunde Zhao Professor Lin Chao 2014 The Thesis of Daniel Yee is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2014 iii DEDICATION This thesis is dedicated to my parents, my family, and my mentor, Dr. Saier. It is only with their help and perseverance that I have been able to complete it. iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Abbreviations ..................................................................................................... vi List of Supplemental Files ............................................................................................ vii List of
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
    [Show full text]
  • Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
    CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs.
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • High-Throughput Bioinformatics Approaches to Understand Gene Expression Regulation in Head and Neck Tumors
    High-throughput bioinformatics approaches to understand gene expression regulation in head and neck tumors by Yanxiao Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2016 Doctoral Committee: Associate Professor Maureen A. Sartor, Chair Professor Thomas E. Carey Assistant Professor Hui Jiang Professor Ronald J. Koenig Associate Professor Laura M. Rozek Professor Kerby A. Shedden c Yanxiao Zhang 2016 All Rights Reserved I dedicate this thesis to my family. For their unfailing love, understanding and support. ii ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. Maureen Sartor for her guidance in my research and career development. She is a great mentor. She patiently taught me when I started new in this field, granted me freedom to explore and helped me out when I got lost. Her dedication to work, enthusiasm in teaching, mentoring and communicating science have inspired me to feel the excite- ment of research beyond novel scientific discoveries. I’m also grateful to have an interdisciplinary committee. Their feedback on my research progress and presentation skills is very valuable. In particular, I would like to thank Dr. Thomas Carey and Dr. Laura Rozek for insightful discussions on the biology of head and neck cancers and human papillomavirus, Dr. Ronald Koenig for expert knowledge on thyroid cancers, Dr. Hui Jiang and Dr. Kerby Shedden for feedback on the statistics part of my thesis. I would like to thank all the past and current members of Sartor lab for making the lab such a lovely place to stay and work in.
    [Show full text]
  • Novel Prognostic Biomarkers of Gastric Cancer Based on Gene Expression Microarray: COL12A1, GSTA3, FGA and FGG
    MOLECULAR MEDICINE REPORTS 18: 3727-3736, 2018 Novel prognostic biomarkers of gastric cancer based on gene expression microarray: COL12A1, GSTA3, FGA and FGG SHIJIE DUAN*, BAOCHENG GONG*, PENGLIANG WANG, HANWEI HUANG, LEI LUO and FUNAN LIU Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China Received February 8, 2018; Accepted August 2, 2018 DOI: 10.3892/mmr.2018.9368 Abstract. Gastric cancer (GC) is the fifth most common screened out as the functional core genes. Certain core genes, malignancy and the third leading cause of cancer-associated including collagen type 12 α1 chain (COL12A1), glutathione mortality in the world. However, its mechanisms of occurrence S-transferase α3 (GSTA3), fibrinogen α chain (FGA) and and development have not been clearly elucidated. Furthermore, fibrinogenγ chain (FGG), were the first repor ted to be associated there is no effective tumor marker for GC. Using DNA microarray with GC. Survival analysis suggested that these four genes, analysis, the present study revealed genetic alterations, screened COL12A1 (P=0.002), GSTA3 (P=3.4x10-6), FGA (P=0.00075) out core genes as novel markers and discovered pathways and FGG (P=1.4x10 -5), were significant poor prognostic factors for potential therapeutic targets. Differentially expressed and therefore, potential targets to improve diagnosis, optimize genes (DEGs) between GC and adjacent normal tissues were chemotherapy and predict prognostic outcomes. identified, followed by pathway enrichment analysis of DEGs. Next, the protein-protein interaction (PPI) network of DEGs Introduction was built and visualized. Analyses of modules in the PPI network were then performed to identify the functional core Gastric cancer (GC) is the fifth most common malignancy genes.
    [Show full text]
  • UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine/Irinotecan
    1226 Vol. 11, 1226–1236, February 1, 2005 Clinical Cancer Research UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine/Irinotecan Leslie E. Carlini,1 Neal J. Meropol,1 John Bever,2 irinotecan. Specifically, patients with genotypes conferring Michael L. Andria,2 Todd Hill,2 Philip Gold,3 low UGT1A7 activity and/or the UGT1A9 (dT)9/9 genotype may be particularly likely to exhibit greater antitumor Andre Rogatko,1 Hao Wang,1 and response with little toxicity. Rebecca L. Blanchard1 1 2 Fox Chase Cancer Center, Philadelphia, Pennsylvania; Roche INTRODUCTION Laboratories, Inc., Nutley, New Jersey; and 3Swedish Cancer Institute, Seattle, Washington Colorectal cancer (CRC) is the third most common cancer in both men and women and the third most prevalent cause of cancer-related death (1). A common approach to the systemic ABSTRACT management of metastatic colorectal cancer is a combination Purpose: Capecitabine and irinotecan are commonly of fluoropyrimidine (e.g., 5-fluorouracil or capecitabine) used in the treatment of metastatic colorectal cancer (CRC). and irinotecan (reviewed in ref. 2). Fluoropyrimidines act We hypothesized that germline polymorphisms within genes primarily through the inhibition of thymidylate synthase (TS), related to drug target (thymidylate synthase) or metabolizing resulting in impaired DNA synthesis and cell death. Irinotecan is enzymes (UDP-glucuronosyltransferase, UGT) would impact a camptothecin compound that inhibits DNA topoisomerase I, response and toxicity to the combination of capecitabine plus resulting in an accumulation of DNA damage and cell death. irinotecan (CPT-11). Irinotecan is a prodrug that undergoes conversion by liver Experimental Design: Sixty-seven patients with measur- carboxylesterases to form the active compound SN-38, 7-ethyl- able CRC were treated with irinotecan i.v.
    [Show full text]
  • GSTA3 (NM 000847) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC204624L4V GSTA3 (NM_000847) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: GSTA3 (NM_000847) Human Tagged ORF Clone Lentiviral Particle Symbol: GSTA3 Synonyms: GSTA3-3; GTA3 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_000847 ORF Size: 666 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC204624). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_000847.3 RefSeq Size: 915 bp RefSeq ORF: 669 bp Locus ID: 2940 UniProt ID: Q16772 Protein Pathways: Drug metabolism - cytochrome P450, Glutathione metabolism, Metabolism of xenobiotics by cytochrome P450 MW: 25.3 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 GSTA3 (NM_000847) Human Tagged ORF Clone Lentiviral Particle – RC204624L4V Gene Summary: Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families.
    [Show full text]
  • 1 Mucosal Effects of Tenofovir 1% Gel 1 Florian Hladik1,2,5*, Adam
    1 Mucosal effects of tenofovir 1% gel 2 Florian Hladik1,2,5*, Adam Burgener8,9, Lamar Ballweber5, Raphael Gottardo4,5,6, Lucia Vojtech1, 3 Slim Fourati7, James Y. Dai4,6, Mark J. Cameron7, Johanna Strobl5, Sean M. Hughes1, Craig 4 Hoesley10, Philip Andrew12, Sherri Johnson12, Jeanna Piper13, David R. Friend14, T. Blake Ball8,9, 5 Ross D. Cranston11,16, Kenneth H. Mayer15, M. Juliana McElrath2,3,5 & Ian McGowan11,16 6 Departments of 1Obstetrics and Gynecology, 2Medicine, 3Global Health, 4Biostatistics, University 7 of Washington, Seattle, USA; 5Vaccine and Infectious Disease Division, 6Public Health Sciences 8 Division, Fred Hutchinson Cancer Research Center, Seattle, USA; 7Vaccine and Gene Therapy 9 Institute-Florida, Port St. Lucie, USA; 8Department of Medical Microbiology, University of 10 Manitoba, Winnipeg, Canada; 9National HIV and Retrovirology Laboratories, Public Health 11 Agency of Canada; 10University of Alabama, Birmingham, USA; 11University of Pittsburgh 12 School of Medicine, Pittsburgh, USA; 12FHI 360, Durham, USA; 13Division of AIDS, NIAID, NIH, 13 Bethesda, USA; 14CONRAD, Eastern Virginia Medical School, Arlington, USA; 15Fenway Health, 14 Beth Israel Deaconess Hospital and Harvard Medical School, Boston, USA; 16Microbicide Trials 15 Network, Magee-Women’s Research Institute, Pittsburgh, USA. 16 Adam Burgener and Lamar Ballweber contributed equally to this work. 17 *Corresponding author E-mail: [email protected] 18 Address reprint requests to Florian Hladik at [email protected] or Ian McGowan at 19 [email protected]. 20 Abstract: 150 words. Main text (without Methods): 2,603 words. Methods: 3,953 words 1 21 ABSTRACT 22 Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV 23 transmission.
    [Show full text]