Chen Et Al, 2018 Late Ediacaran Trackways Produced by Bilaterian An

Total Page:16

File Type:pdf, Size:1020Kb

Chen Et Al, 2018 Late Ediacaran Trackways Produced by Bilaterian An SCIENCE ADVANCES | RESEARCH ARTICLE PALEONTOLOGY Copyright © 2018 The Authors, some Late Ediacaran trackways produced by bilaterian rights reserved; exclusive licensee animals with paired appendages American Association for the Advancement 1,2 1,3 2,4 1,2,3 5 of Science. No claim to Zhe Chen *, Xiang Chen , Chuanming Zhou , Xunlai Yuan , Shuhai Xiao * original U.S. Government Works. Distributed Ediacaran trace fossils provide key paleontological evidence for the evolution of early animals and their behaviors. under a Creative Thus far, however, this fossil record has been limited to simple surface trails and relatively shallow burrows. We Commons Attribution report possible trackways, preserved in association with burrows, from the terminal Ediacaran Shibantan Member NonCommercial (ca. 551 to ca. 541 million years ago) in the Yangtze Gorges area of South China. These trace fossils represent the License 4.0 (CC BY-NC). earliest known trackways. They consist of two rows of imprints arranged in poorly organized series or repeated groups. These trackways may have been produced by bilaterian animals with paired appendages, although the phylum-level phylogenetic affinity of the trace makers remains unknown. It is possible that the trackways and associated burrows were produced by the same trace maker, indicating a complex behavior involving both walking and burrowing. Together, these trackways and burrows mark the arrival of a new era characterized by an increasing geobiological footprint of bilaterian animals. Downloaded from INTRODUCTION panarthropods) and represent an important category of ichnological Molecular clocks indicate that the kingdom Metazoa diverged in the architecture, are hitherto unknown in the Ediacaran Period [(9), Tonian Period [~1000 to 720 million years (Ma) ago], major superphyla but see Chen et al.(13)]. This pattern is in sharp contrast to the early of animals in the Cryogenian Period (~720 to 635 Ma ago), and most Cambrian ichnological record, where trackways are common and some bilaterian animal phyla in the Ediacaran Period (635 to 541 Ma ago) (1). seem to record locomotion activities of early arthropods (10, 16, 17). However, although molecular fossils of sponges have been reported Here, we report new trace fossils from the terminal Ediacaran http://advances.sciencemag.org/ from the Cryogenian Period (2), unambiguous bilaterian animals do Shibantan Member of the upper Dengying Formation (ca. 551 to not occur in the fossil record until the late Ediacaran Period (3). ca. 541 Ma ago) in the Yangtze Gorges area of South China (Fig. 1; Traditionally, many Ediacaran body fossils have been interpreted as see the Supplementary Materials for a description of the geological representatives of living animal phyla (4). In this traditional view, ar- and stratigraphic setting). These trace fossils include burrows and pos- thropods and annelids, both of which are expected to have paired ap- sible trackways that are preserved in close proximity and are apparently pendages, are featured prominently in the Ediacara biota. For example, connected. They were probably made by millimeter-sized animals with Dickinsonia and Spriggina have been interpreted as polychaetes, and bilateral appendages and can provide important insights into early Parvancorina has been interpreted as an arthropod (4). However, di- bilaterian evolution and behaviors. agnostic anatomical features supporting such interpretations—that is, parapodia that are inferred to be present in the last common ancestor on June 6, 2018 of annelids (5) and jointed appendages in the last common ancestor of RESULTS arthropods (6)—are either absent or not preserved in these fossils. The trace fossils described in this paper are preserved in dark gray, Thus, these traditional interpretations have been questioned (7), and thin-bedded, bituminous limestone of the ca. 551-Ma to ca. 541-Ma the current view is that few Ediacaran animal fossils are phylogeneti- Shibantan Member deposited in a subtidal environment between cally resolved at the phylum level (8). Thus far, no Ediacaran body fos- fair-weather and storm wave bases (15, 18). Like other trace fossils from sils have been convincingly shown to bear paired appendages. the same locality and horizon, they exclusively occur in beds character- The trace fossil record provides another archive that can be ex- ized by crinkled microlaminae, which are interpreted as microbial plored to gain insights into the early evolution of animals and ap- mats, suggesting intimate ecological interactions between the trace pendages (9). In general, most Ediacaran trace fossils are simple, makers and the mats (13, 15, 19). These microbial mats comprised a horizontal, unbranched trails and burrows, representing simple be- few millimeters of sediment and may have also helped trace fossil pres- haviors of cnidarian-grade and simple worm-like animals that lived ervation (20, 21). close to the sediment surface (10, 11). Only a few Ediacaran trace fos- The material consists of co-occurring trackways (labeled TW1 and sils record moderately complex behaviors of trace-making animals TW2 in Fig. 2) and burrows (labeled UB1 to UB3 in Fig. 2) that were (12–15). Trackways, which are a series of impressions left by locomotion excavated in situ with known stratigraphic orientation and with both appendages (for example, parapodia of annelids and appendages of parts and counterparts. Thus, there is no ambiguity with regard to the identification of epirelief versus hyporelief preservation. 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Trackways Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, The trackways are straight or slightly curved, each consisting of two Nanjing 210008, China. 3University of Chinese Academy of Sciences, Beijing 100049, rows of shallow depressions on the top bedding surface (that is, nega- China. 4CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing tive epireliefs; Fig. 2A) and two rows of projections on the correspond- Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing ing bottom surface (that is, positive hyporeliefs; Fig. 2B). Other than 210008, China. 5Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. these depressions and projections, there is no discernible topographic *Corresponding author. Email: [email protected] (S.X.); [email protected] (Z.C.) relief or evidence for sediment disturbance between and beyond the Chen et al., Sci. Adv. 2018; 4 :eaao6691 6 June 2018 1of8 SCIENCE ADVANCES | RESEARCH ARTICLE Shuijingtuo Fm Cambrian Yanjiahe Fm Cambrian SSFs Tarim (~541 Ma) North China Mbr Baimatuo Sinotubulites Yangtze Cathaysia Ar-Pt Vendotaenia sp. Ediacaran Trackways Huangling Dengying Fm Ediacara fossils & anticline Shibantan Mbr trace fossils HMJ 551.1 ± 1.0 Ma (U-Pb) Miaohe biota Ar-Pt Acanthomorphic acritarchs 632.5 ± 1.0 Ma (U-Pb) Zigui Doushantuo Fm 635.3 ± 1.1 Ma (U-Pb) Wuhe 50 m 10 km Yangtze Yichang Cryogenian Nantuo Fm Downloaded from River 0 m Ar-Pt Chert and Dolostone Diamictite Cryogenian- Huangling Archean- Fault phosphorite Ediacaran granite Paleoproterozoic ABBlack shale Limestone Fig. 1. Geological map and stratigraphic column. (A) Generalized geological map of the Yangtze Gorges area, showing the distribution of Ediacaran strata and the http://advances.sciencemag.org/ fossil location at Wuhe (triangle). Inset map shows the location of the Yangtze Platform in South China. (B) Stratigraphic column of the Ediacaran Doushantuo and Dengying formations, showing stratigraphic occurrences of fossils, including the trackways (triangle) reported in this paper. Mbr, Member; Fm, Formation; SSF, small shelly fossil; HMJ, Hamajing Formation. Zircon U-Pb ages from the work of Schmitz (40). Figure produced by S.X. using Adobe Illustrator. two rows of depressions. Furthermore, TW2 crosses over but does not facing series that are at an acute angle (~15°) with respect to the midline. disrupt UB1 and UB2 (Fig. 2, A and C). Thus, TW1 and TW2 cannot Each series is 17 to 18 mm in length and consists of four or more tracks, be trails, partially preserved or partially excavated burrows, or collapsed although the exact number of tracks is difficult to determine. The op- burrows (fig. S2), because trails or burrows would disrupt the sediment posingly facing series are asymmetrical across the midline and are between the two lateral walls (fig. S2, A and C), they would cut into slightly staggered (or overlap) along the length. The apparent “stride” UB1 and UB2 when crossing over the latter (fig. S2, E and F), and (distance between two successive series along length) is ~13.7 mm. Dis- on June 6, 2018 the lateral walls of collapsed burrows would be preserved as positive continuous impressions seem to be present along the midline and epireliefs rather than negative epireliefs (fig. S2C). For the same rea- oblique scratches on one side of the trackway (Fig. 3, C and D; green sons, the depressions in TW2 cannot be outlets emerging from a hor- color in Fig. 3E), but it is uncertain whether these are distinct features. izontal burrow, for example, epichnial version of a treptichnid (10), as TW2 has a preserved trackway length of ~91 mm, an external width hasbeenproposedfortheCambriantracefossilBicavichnites that was of~16mm,andaninternalwidthof~4mm(Fig.4,AtoC).Tracksize otherwise interpreted as a trackway
Recommended publications
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
    Journal of Paleontology, page 1 of 30 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen.
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • Grand Patrons RICHARD K. BAMBACH ARTHUR J. BOUCOT
    OGic OGic L al L al O S O S T O T O N N C C O O I I E E E E T L T L Y Y A A P P OFFICERS AND EDITORS OF THE PALEONTOLOGICAL SOCIETY Grand Patrons ANDREW H. KNOLL RICHARD K. BAMBACH CHARLES LANE ARTHUR J. BOUCOT ALLAN R. LARSON President PETER J. HARRIES, SIMON SCHNEIDER, Editor, Special Publications RODNEY M. FELDMAN AND CARRIE SCHWEITZER CECILIA LENK AND PAUL K. STROTHER BRUCE MacFADDEN, North Carolina State CASP COLIN SUMRALL, ROBERT AND ELVIRA GASTALDO JERE H. LIPPS Florida Museum of Natural History CRAIG SCOTT, Univ. of Tennessee, Knoxville THE FAMILY OF N. GARY LANE ALAN R. LORD MICHAEL HAUTMANN, bmacfadd@fl mnh.ufl .edu Royal Tyrrell Museum of Paleontology [email protected] A. R. (PETE) PALMER CHRIS MAPLES AND SARA MARCUS Univ. of Zurich J. WILLIAM SCHOPF President-Elect MARY SILCOX, Education/Outreach Coordinator JANET WOOD McGREGOR RAMAN J. SINGH WILLIAM DiMICHELE, MARTIN J. HEAD, Univ. of Toronto Scarborough ROWAN LOCKWOOD, CHERYL L. METZ STEVEN M. STANLEY Smithsonian Institution Brock Univ. College of William & Mary MOLLY F. AND CALVIN MILLER EDUARDO LEORRI SORIANO, [email protected] [email protected] RONALD W. MORIN THOMAS HEGNA, East Carolina Univ., Greenville Patrons OSBORNE B. NYE, JR. Past President Western Illinois Univ. Diversity and Inclusion Coordinator EDWARD J. ANDREW, JR. DAVID VARRICCHIO, TERESA O’NEILL ARNOLD I. MILLER, DENA SMITH, WILLIAM I. AUSICH Montana State Univ. RONALD L. PARSLEY Univ. of Cincinnati SAMANTHA HOPKINS, Univ. of Colorado BRUCE M. BELL MARK E. PATZKOWSKY [email protected] Univ.
    [Show full text]
  • Review and Prospect on the Botryoidal Structures from the Sinian Dengying Formation, Sichuan Basin, China
    Petroleum xxx (2017) 1e7 Contents lists available at ScienceDirect Petroleum journal homepage: www.keaipublishing.com/en/journals/petlm Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China * Chengbo Lian a, b, , Guanxiong Ren a, Fang Qu a, Xiucheng Tan a, b, Ling Li a, Wei Zeng a, Guang Hu a, Hong Liu a a School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, Sichuan, China b Department of Sedimentology and Hydrocarbon Accumulation, PetroChina Key Laboratory of Carbonate Reservoir, Southwest Petroleum University, Chengdu, 610500, Sichuan, China article info abstract Article history: Fabric of carbonate rock is the important foundation and one of main research contents for study on Received 15 March 2016 carbonate sedimentology, and has always been the attention of the academic circles. Botryoidal Received in revised form structures from the Sinian Dengying Formation in the Sichuan Basin is a kind of special carbonate 10 October 2016 fabric, the fabric is named after the shape of a grape. In this paper, from four aspects of the research Accepted 2 December 2016 status, the definition of the botryoidal structures and the related terms, the construction charac- teristics of the botryoidal structures, the component of the botryoidal structures, geochemical Keywords: characteristics and the genesis of the botryoidal structures are reviewed. It points out the current Botryoidal structures Construction research issues of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin, Lamina and put forward that future research should focus on the accurate analysis of its internal con- Genesis struction, precipitation mechanism of the major components, and the construction mechanism of botryoidal structures.
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin, Feng Li, Zheng Zhou, Guoxiao Zhou PII: S0264-8172(17)30172-1 DOI: 10.1016/j.marpetgeo.2017.05.013 Reference: JMPG 2905 To appear in: Marine and Petroleum Geology Received Date: 31 August 2016 Revised Date: 4 May 2017 Accepted Date: 4 May 2017 Please cite this article as: Qin, S., Li, F., Zhou, Z., Zhou, G., Geochemical characteristics of water- dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China, Marine and Petroleum Geology (2017), doi: 10.1016/j.marpetgeo.2017.05.013. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin a,* , Feng Li b, Zheng Zhou c, Guoxiao Zhou a a Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, No.20 Xueyuan Road, P. O. Box 910, Beijing, 100083 P. R. China ([email protected] ) b Science and Technology Management Department of PetroChina, No.9 Dongzhimen North Street ,Beijing, 100007, P.
    [Show full text]
  • New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
    OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3.
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]