Sedimentology (2016) 63, 378–410 doi: 10.1111/sed.12220 Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran–Cambrian transition LAWRENCE M. OCH*, LORENZO CREMONESE*, GRAHAM A. SHIELDS-ZHOU*†, SIMON W. POULTON‡, ULRICH STRUCK§, HONGFEI LING¶,DALI¶,XICHEN¶, CHRISTINA MANNING**, MATTHEW THIRLWALL**, HARALD STRAUSS†† and MAOYAN ZHU† *Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK (E-mail:
[email protected]) †State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 21008, China ‡School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK §Leibniz-Institut fur€ Evolutions- und Biodiversitatsforschung,€ Museum fur€ Naturkunde, 10115 Berlin, Germany ¶State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China **Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK ††Institute for Geology and Paleontology, Westfalische€ Wilhelms-Universitat€ Munster,€ 48149 Munster,€ Germany Associate Editor – Ian Fairchild ABSTRACT The Ediacaran–Cambrian interval was an eventful transitional period, when dynamic interactions between the biosphere and its physical environment allowed the Earth System to cross into a new state, characterized by the presence of metazoans, more equable climates and more expansive oxygena- tion of the oceans. Due to the retreat of widespread sulphidic conditions, redox-sensitive trace-metals could accumulate to a greater extent in ‘black shales’ deposited in localized anoxic/euxinic environments, such as highly productive ocean margins. This study investigates the concentrations of the redox-sensitive trace-metals molybdenum and vanadium in organic-rich sed- imentary rocks from seven sections of the Yangtze Platform, slope and basin.