1 Long-Term Evolution of Terrestrial Inputs from the Ediacaran to Early Cambrian: Clues
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. -
Assembly, Configuration, and Break-Up History of Rodinia
Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No. -
Proto-Adamastor Ocean Crust (920 Ma) Described in Brasiliano Orogen from Coetaneous Zircon and Tourmaline
Geoscience Frontiers xxx (xxxx) xxx HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Proto-Adamastor ocean crust (920 Ma) described in Brasiliano Orogen from coetaneous zircon and tourmaline Léo A. Hartmann a,*, Mariana Werle a, Cassiana R.L. Michelin a, Cristiano Lana b, Gláucia N. Queiroga b, Marco P. Castro b, Karine R. Arena a a Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil b Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-000, Ouro Preto, Minas Gerais, Brazil article info abstract Article history: Proto-Adamastor ocean bathed Rodinia and successor continental fragments from 1.0e0.9 Ga up to Received 25 March 2018 0.75 Ga, and evolved into world Adamastor Ocean at 0.75e0.60 Ga. Mesoproterozoic oceanic crust is Received in revised form poorly preserved on continents, only indirect evidence registered in Brasiliano Orogen. We report first 27 June 2018 evidence of ophiolite originated in proto-Adamastor. We use multi-technique U-Pb-Hf zircon and d11B Accepted 18 September 2018 tourmaline isotopic and elemental compositions. The host tourmalinite is enclosed in metaserpentinite, Available online xxx ¼þ ¼ Handling Editor: R. Damian Nance both belonging to the Bossoroca ophiolite. Zircon is 920 Ma-old, 3 Hf(920 Ma) 12, HfTDM 1.0 Ga and has ‘oceanic’ composition (e.g., U/Yb < 0.1). Tourmaline is dravite with d11B ¼þ1.8& (Tur 1), 0& (Tur 2), À & Keywords: 8.5 (Tur 3). -
Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
Journal of Paleontology, page 1 of 30 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen. -
Abstract Volume
https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E. -
Grand Patrons RICHARD K. BAMBACH ARTHUR J. BOUCOT
OGic OGic L al L al O S O S T O T O N N C C O O I I E E E E T L T L Y Y A A P P OFFICERS AND EDITORS OF THE PALEONTOLOGICAL SOCIETY Grand Patrons ANDREW H. KNOLL RICHARD K. BAMBACH CHARLES LANE ARTHUR J. BOUCOT ALLAN R. LARSON President PETER J. HARRIES, SIMON SCHNEIDER, Editor, Special Publications RODNEY M. FELDMAN AND CARRIE SCHWEITZER CECILIA LENK AND PAUL K. STROTHER BRUCE MacFADDEN, North Carolina State CASP COLIN SUMRALL, ROBERT AND ELVIRA GASTALDO JERE H. LIPPS Florida Museum of Natural History CRAIG SCOTT, Univ. of Tennessee, Knoxville THE FAMILY OF N. GARY LANE ALAN R. LORD MICHAEL HAUTMANN, bmacfadd@fl mnh.ufl .edu Royal Tyrrell Museum of Paleontology [email protected] A. R. (PETE) PALMER CHRIS MAPLES AND SARA MARCUS Univ. of Zurich J. WILLIAM SCHOPF President-Elect MARY SILCOX, Education/Outreach Coordinator JANET WOOD McGREGOR RAMAN J. SINGH WILLIAM DiMICHELE, MARTIN J. HEAD, Univ. of Toronto Scarborough ROWAN LOCKWOOD, CHERYL L. METZ STEVEN M. STANLEY Smithsonian Institution Brock Univ. College of William & Mary MOLLY F. AND CALVIN MILLER EDUARDO LEORRI SORIANO, [email protected] [email protected] RONALD W. MORIN THOMAS HEGNA, East Carolina Univ., Greenville Patrons OSBORNE B. NYE, JR. Past President Western Illinois Univ. Diversity and Inclusion Coordinator EDWARD J. ANDREW, JR. DAVID VARRICCHIO, TERESA O’NEILL ARNOLD I. MILLER, DENA SMITH, WILLIAM I. AUSICH Montana State Univ. RONALD L. PARSLEY Univ. of Cincinnati SAMANTHA HOPKINS, Univ. of Colorado BRUCE M. BELL MARK E. PATZKOWSKY [email protected] Univ. -
Early Paleozoic Post-Breakup Magmatism Along the Cordilleran Margin of Western North America: New Zircon U-Pb Age And
Research Paper GEOSPHERE Early Paleozoic post-breakup magmatism along the Cordilleran margin of western North America: New zircon U-Pb age and GEOSPHERE, v. 15, no. 4 whole-rock Nd- and Hf-isotope and lithogeochemical results from https://doi.org/10.1130/GES02044.1 the Kechika group, Yukon, Canada 16 figures; 1 set of supplemental files Roderick W. Campbell1, Luke P. Beranek1, Stephen J. Piercey1, and Richard Friedman2 1 CORRESPONDENCE: [email protected] Department of Earth Sciences, Memorial University of Newfoundland, 9 Arctic Avenue, St. John’s, Newfoundland and Labrador, A1B 3X5 Canada 2Pacific Centre for Isotopic and Geochemical Research, University of British Columbia, 2207 Main Mall, Vancouver, British Columbia, V6T 1Z4 Canada CITATION: Campbell, R.W., Beranek, L.P., Piercey, S.J., and Friedman, R., 2019, Early Paleozoic post- breakup magmatism along the Cordilleran margin of ■ ABSTRACT et al., 2002; Li et al., 2008; Macdonald et al., 2012). Despite several decades of western North America: New zircon U-Pb age and research on Cordilleran margin development, there remain many open questions whole-rock Nd- and Hf-isotope and litho geo chemical results from the Kechika group, Yukon, Canada: Geo- Post-breakup magmatic rocks are recognized features of modern and an- about the precise age and paleogeographic setting of Neo protero zoic to lower sphere, v. 15, no. 4, p. 1262–1290, https://doi.org cient passive margin successions around the globe, but their timing and sig- Paleozoic rift-related rock units that crop out in the western United States and /10.1130 /GES02044.1. nificance to non-plume-related rift evolution is generally uncertain. -
Review and Prospect on the Botryoidal Structures from the Sinian Dengying Formation, Sichuan Basin, China
Petroleum xxx (2017) 1e7 Contents lists available at ScienceDirect Petroleum journal homepage: www.keaipublishing.com/en/journals/petlm Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China * Chengbo Lian a, b, , Guanxiong Ren a, Fang Qu a, Xiucheng Tan a, b, Ling Li a, Wei Zeng a, Guang Hu a, Hong Liu a a School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, Sichuan, China b Department of Sedimentology and Hydrocarbon Accumulation, PetroChina Key Laboratory of Carbonate Reservoir, Southwest Petroleum University, Chengdu, 610500, Sichuan, China article info abstract Article history: Fabric of carbonate rock is the important foundation and one of main research contents for study on Received 15 March 2016 carbonate sedimentology, and has always been the attention of the academic circles. Botryoidal Received in revised form structures from the Sinian Dengying Formation in the Sichuan Basin is a kind of special carbonate 10 October 2016 fabric, the fabric is named after the shape of a grape. In this paper, from four aspects of the research Accepted 2 December 2016 status, the definition of the botryoidal structures and the related terms, the construction charac- teristics of the botryoidal structures, the component of the botryoidal structures, geochemical Keywords: characteristics and the genesis of the botryoidal structures are reviewed. It points out the current Botryoidal structures Construction research issues of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin, Lamina and put forward that future research should focus on the accurate analysis of its internal con- Genesis struction, precipitation mechanism of the major components, and the construction mechanism of botryoidal structures. -
Accepted Manuscript
Accepted Manuscript Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin, Feng Li, Zheng Zhou, Guoxiao Zhou PII: S0264-8172(17)30172-1 DOI: 10.1016/j.marpetgeo.2017.05.013 Reference: JMPG 2905 To appear in: Marine and Petroleum Geology Received Date: 31 August 2016 Revised Date: 4 May 2017 Accepted Date: 4 May 2017 Please cite this article as: Qin, S., Li, F., Zhou, Z., Zhou, G., Geochemical characteristics of water- dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China, Marine and Petroleum Geology (2017), doi: 10.1016/j.marpetgeo.2017.05.013. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin a,* , Feng Li b, Zheng Zhou c, Guoxiao Zhou a a Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, No.20 Xueyuan Road, P. O. Box 910, Beijing, 100083 P. R. China ([email protected] ) b Science and Technology Management Department of PetroChina, No.9 Dongzhimen North Street ,Beijing, 100007, P. -
New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3. -
Dinosaurs.Pdf
DINOSAURS COMPILED BY HOWIE BAUM THIS IS THE FIRST OF 3 PAGES THAT HELP TO PUT THE 165 MILLION YEAR REIGN OF THE DINOSAURS, IN PERSPECTIVE. IT IS A CALENDAR THAT IS DESIGNED SO THAT ALL OF THE TIME, SINCE THE BIG BANG HAPPENED – 13.8 BILLION YEAR AGO, UP TO THE PRESENT TIME, IS COMPRESSED INTO 1 YEAR. period First Dinosaurs Dinosaurs lived for 165 million years !! Humans have only existed for 0.004% of the age of the Earth ! The rocks of the Cincinnatian series were deposited between approximately 451 and 443 million years ago, during the Ordovician period, when all the land was underwater ! BASIC DINOSAUR FACTS •Dinosaurs are a group of reptiles that have lived on Earth for about 165 million years. About 60% of dinosaurs ate plants (herbivores) and 40% ate meat (carnivores) •In 1842, the English naturalist Sir Richard Owen coined the term Dinosauria, derived from the Greek deinos, meaning “fearfully great,” and sauros, meaning “lizard.” •Dinosaur fossils have been found on all 7 continents. •All non-avian (non-bird) dinosaurs went extinct about 66 million years ago (MYA). •There are roughly 700 known species of extinct dinosaurs. •Modern birds are a kind of dinosaur because they share a common ancestor with non-avian dinosaurs. The Archosaurs consist of a diverse group of Triassic living and extinct reptiles that are subdivided into crocodiles, the 2 main types of dinosaurs, and pterosaurs. ORNITHISCHIAN AND SAURISCHIAN DINOSAURS As shown on the previous diagram, there are 2 types of Dinosaurs. Dinosaurs and reptiles have hip girdles, or pelvises, and all of them are composed of three bones: the ilium, ischium, and pubis.