Earth's Tectonic History
Total Page:16
File Type:pdf, Size:1020Kb
Earth’s Tectonic History 1 Earth’s Tectonic History SIBERIA CANADA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 430 mya (Silurian – spread of jawless fishes, first jawed fish, first appearance of coral reefs, and first vascular plants Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA AUSTRALIA 400 mya (Early Devonian – diversificaIon of vascular land plants, first insects) Through the Devonian are the first major radiaon of plants. In early Devonian, land plants Were less than a meter tall…by the end plants had true roots and leaves Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA Tiktaalik CANADA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 370 mya (Late Devonian – first land vertebrates, first forests) - The Tiktaalik (fishapod), discovered in Canadian ArcQc in 2004 shares anatomical features With primiQve fish: fins, scales, gills, but shoulders Weren’t connected to skull and had ribs Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 340 mya (Early Carboniferous - “The Coal Age”) - had a tropical, humid climate, and vast sWamp forests, Which provided the organic material that became peat and coal beds Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA NORTH Tethys CHINA Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 300 mya (Late Carboniferous – first repIles) - One of the greatest evoluQonary innovaons…the amnioQc egg This alloWed further exploitaon of land by tetropods – birds and repQles could lay eggs on land Without desiccaon Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA PANTHALASSA CANADA PANGEA Tethys NORTH CHINA Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 280 mya (Early Permian – first mammal-like repIles) - MoQon of plates brought conQnents together into single landmass – Pangea. Most of the rest of the Earth Was occupied by a large single ocean – Panthalassa, With a smaller eastern sea, Tethys Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA Tethys Ocean NORTH PANGEA CHINA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 260 mya (Late Permian – mass exIncIons of marine invertebrates and terrestrial vertebrates and insects) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA Tethys NORTH Ocean CHINA PANGEA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 240 mya (Early Triassic – first dinosaurs, first mammals) – first mammals Were small and shreW-like, Would remain that Way unQl the late Cretaceous Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA NORTH CHINA CANADA PANGEA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 220 mya (Late Triassic – first flying vertebrates) – throughout the Triassic, Pangea breaks up into GondWana and Laurasia Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA NORTH CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 200 mya (Early Jurassic – Gondwanan and Laurasian superconInents) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA NORTH CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 170 mya (Middle Jurassic – dinosaurs dominate landscape, first birds) – Archaeopteryx, plants are mostly cycads, ferns and ginkgos Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA EUROPE CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 150 mya (Late Jurassic – first flowering plants, first birds) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA EUROPE CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 120 mya (Early Cretaceous – “Age of the Dinosaurs”) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History CANADA SIBERIA EUROPE CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 105 mya (Middle Cretaceous – adapIve radiaIon of flowering plants and pollinaIng insects) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History CANADA SIBERIA EUROPE CHINA Tethys Ocean AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 90 mya (Late Cretaceous) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History CANADA SIBERIA EUROPE CHINA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 65 mya (K-T – mass exIncIon) – Note the long period of isolaon of Australia With a loW percentage of its faunas shared With other areas (<20% of its fauna With other conQnents, and has high (91%) endemism Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History CANADA SIBERIA EUROPE CHINA ArIodactyla AUSTRALIA Perissodactyla h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 50 mya (Eocene – adapIve radiaIon of mammals) – separaon of AntarcQca and Australia created a deep Water passage, the circum-AntarcQc current. This resulted in loWer global temperatures, increased seasonality, more open savanna-like vegetaon, reducQon in forests, likely selected for larger bodied mammals. Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA EUROPE CHINA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 35 mya (Oligocene – major coral reef development) – on land appearance of primates, elephants, marsupials in Australia Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA EUROPE CHINA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 20 mya (Miocene – global expansion of major C4 grasslands) – formaon of Andes in SA, Sierra Nevadas, Cascades in NA, rids in East Africa, first migraon through Bering land bridge, formaon of Panama isthmus in end of Miocene Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Earth’s Tectonic History SIBERIA CANADA EUROPE CHINA AUSTRALIA h;p://jan.ucc.nau.edu/~rcb7/globaltext2.html 0.05 mya (Pleistocene - glaciaons) Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous TerQary Paleozoic Mesozoic Cenozoic Phanerozoic 542 488 444 416 359 299 251 200 146 65 1.8 mya Zoogeographic Consequences 1) Shiing Paern of Isolaon and Connectedness Landmass comparisons of NA, SA, Africa, Eurasia, NeW Guinea, Madagascar and Australia Mammal bioQc similarity decreases as overland distance between landmasses increases Most pairWise comparisons With Australia (A) fall beloW trend line (more disQnct due to long isolaon of Australian conQnent) (figure from Flessa 1980) 22 Zoogeographic Consequences 1) Shiing Paern of Isolaon and Connectedness 185 mya Decrease in marine invertebrate similarity as distance between Western and eastern AtlanQc basins increase over Qme As mid-AtlanQc ridge pushed conQnental plates apart, AtlanQc Ocean formed and got bigger Increasing