Science Journals

Total Page:16

File Type:pdf, Size:1020Kb

Science Journals See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325884509 Extensive marine anoxia during the terminal Ediacaran Period Article in Science Advances · June 2018 DOI: 10.1126/sciadv.aan8983 CITATIONS READS 4 683 9 authors, including: Feifei Zhang Shuhai Xiao Yale University Virginia Polytechnic Institute and State University 44 PUBLICATIONS 102 CITATIONS 267 PUBLICATIONS 9,078 CITATIONS SEE PROFILE SEE PROFILE Brian Kendall Stephen Romaniello University of Waterloo Arizona State University 51 PUBLICATIONS 2,234 CITATIONS 55 PUBLICATIONS 518 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ediacaran Taphonomy View project High-resolution chemostratigraphic global correlations View project All content following this page was uploaded by Feifei Zhang on 21 June 2018. The user has requested enhancement of the downloaded file. SCIENCE ADVANCES | RESEARCH ARTICLE ECOLOGY Copyright © 2018 The Authors, some Extensive marine anoxia during the terminal rights reserved; exclusive licensee Ediacaran Period American Association for the Advancement 1 2 3 1 4 5 of Science. No claim to Feifei Zhang *, Shuhai Xiao , Brian Kendall , Stephen J. Romaniello , Huan Cui , Mike Meyer , original U.S. Government 1 6 1,7 Geoffrey J. Gilleaudeau , Alan J. Kaufman , Ariel D. Anbar Works. Distributed under a Creative The terminal Ediacaran Period witnessed the decline of the Ediacara biota (which may have included many stem- Commons Attribution group animals). To test whether oceanic anoxia might have played a role in this evolutionary event, we measured NonCommercial 238 U isotope compositions (d U) in sedimentary carbonates from the Dengying Formation of South China to ob- License 4.0 (CC BY-NC). tain new constraints on the extent of global redox change during the terminal Ediacaran. We found the most negative carbonate d238U values yet reported (−0.95 per mil), which were reproduced in two widely spaced co- eval sections spanning the terminal Ediacaran Period (551 to 541 million years ago). Mass balance modeling indicates an episode of extensive oceanic anoxia, during which anoxia covered >21% of the seafloor and most U entering the oceans was removed into sediments below anoxic waters. The results suggest that an expansion of oceanic anoxia and temporal-spatial redox heterogeneity, independent of other environmental and ecological factors, may have contributed to the decline of the Ediacara biota and may have also stimulated animal motility. Downloaded from INTRODUCTION boundary (3, 5). This temporal mismatch and a protracted decline of Macroscopic and morphologically complex multicellular eukaryotes, the biota have prompted some to favor a biotic replacement model as including possible representatives of stem-group animal phyla, diversified an explanation for the decline of the Ediacara biota (3, 5). This model in the second half of the Ediacaran Period starting ~570 million years suggests that Ediacaran organisms were progressively replaced by http://advances.sciencemag.org/ (Ma) ago (1). The fossil record of these eukaryotes is sometimes referred newly evolved bilaterian animals, which may have directly or indirect- to as the Ediacara biota (2). The Ediacara biota reached their maximum ly modulated the availability of resources, including both substrates taxonomic and morphological diversity about 560 Ma ago, then subse- and nutrients (3). quently declined in the terminal Ediacaran Period (~550 to 541 Ma Resolving this debate requires the integration of paleontological ago), and almost completely disappeared at the Ediacaran-Cambrian and geochemical data. At a global scale, this integration is challeng- transition about 541 Ma ago (2–4). The causes of the decline and even- ing because precise stratigraphic correlation of Ediacaran strata is tual disappearance of the Ediacara biota remain a subject of intensive difficult (17) and proxies for global ocean redox conditions are few. debate (3, 5, 6). Sperling et al. (18) assembled a global compilation of Fe speciation Changes in ocean redox conditions are often implicated as a driver of data, but the temporal resolution of this compilation is dependent thedeclineoftheEdiacarabiota(3, 7–9). Given the physiological require- on interregional correlation and is insufficient for the reconstruction ments of many Ediacaran organisms, particularly macroscopic diffusion- of short-term oceanic redox dynamics in the terminal Ediacaran Pe- on June 20, 2018 dependent stem-group animals (10), O2 availability is expected to have an riod. In contrast, other studies have focused on local redox proxies impact on the distribution of the Ediacara biota both locally and globally from fossiliferous successions so that geochemical and paleontolog- (11–14). It has been shown that Ediacaran organisms were locally ical data were collected from the same successions, avoiding the chal- restricted to oxygenated environments under highly dynamic redox lenges of interregional correlation. For example, Darroch et al. (5), conditions (13). Planavsky et al. (12) suggested that generally low global Wood et al. (13), and Tostevin et al. (6) applied Fe speciation and Ce O2 availability until ~750 Ma ago was a key factor delaying the rise of anomalies to carbonates and siliciclastic rocks of the Nama Group to multicellular animals. Canfield et al. (11) specifically linked the initial understand factors controlling the distribution and decline of the diversification of the Ediacara biota at ~570 Ma with a deep ocean oxy- Ediacara biota in the terminal Ediacaran Period. Darroch et al. (5) genation event (15, 16). However, the possible relationship between presented Fe speciation data from a single terminal Ediacaran sec- ocean redox evolution and the decline of the Ediacara biota has not tion that records lower genus richness than older Ediacaran assem- been clearly demonstrated. blages. Their data show that these sediments that record declining Previous studies reported geochemical evidence for oceanic an- diversity of the Ediacara biota were deposited in oxic environments, oxia at the Ediacaran-Cambrian boundary (7, 8). However, current and they concluded that oxygen stress probably did not play a role in fossil evidence points to a significant decline in biodiversity in the ter- the decline of the Ediacara biota. However, their data are also con- minal Ediacaran Period, up to 10 Ma ago before the Ediacaran-Cambrian sistent with the possibility that terminal Ediacaran organisms were challenged by a global expansion of anoxia and were restricted to oxic refugia in oceans with highly heterogeneous redox conditions. 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, Wood et al. (13) and Tostevin et al. (6) have shown that terminal USA. 2Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA. 3Depart- ment of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario Ediacaran organisms are not found in anoxic environments and that N2L 3G1, Canada. 4Department of Geoscience and NASA Astrobiology Institute, Univer- their distribution is strongly controlled by oxygen availability. Ter- sity of Wisconsin-Madison, Madison, WI 53706, USA. 5Carnegie Institution for Science, minal Ediacaran organisms may have been globally challenged by an Washington, DC 20005, USA. 6Geology Department and Earth System Science Inter- 7 expansion of oceanic anoxia and locally relegated to oxic refugia. disciplinary Center, University of Maryland, College Park, MD 20742, USA. School of Mo- 238 235 d238 lecular Sciences, Arizona State University, Tempe, AZ 85287, USA. Uranium isotopes ( U/ U, denoted as U) in carbonates *Corresponding author. Email: [email protected] maybeuniquelysuitedtodifferentiateglobalfromlocalperturbations Zhang et al., Sci. Adv. 2018; 4: eaan8983 20 June 2018 1of11 SCIENCE ADVANCES | RESEARCH ARTICLE in ocean redox chemistry (19–21) and therefore to test the degree to this simplified calculation, all types of sinks other than anoxic/euxinic which changing global ocean redox conditions may have shaped sinks are lumped into a single “other” sink (see the Supplementary D the evolutionary trajectory of the Ediacara biota. To meet this chal- Materials for other sinks and other). Because the fraction of U removed lenge and to specifically address the question of whether the decline into anoxic/euxinic sedimentary sinks is intimately coupled to the pro- d238 of the Ediacara biota was driven by an episode of expanded marine portion of anoxic/euxinic versus oxic bottom waters, Useawater can anoxia, we analyzed d238U in carbonates from the Dengying Formation be used to calculate the area of anoxic/euxinic seafloor using Eq. 4, (South China; ca. 551 to 541 Ma ago) that also contains terminal derived from the U isotope mass balance and assuming a first-order Ediacaran macrofossils characteristic of the Nama assemblage. The in- relationship between U burial rate into each sink and the global tegration of d238U data and paleontological data from the same suite seawater U reservoir (see the Supplementary Materials for detailed of rocks allows us to reconstruct global ocean redox conditions at a calculation and parameters used in the calculation) time when the Ediacara biota began to decline. 238 238 d Useawater ¼ d Uinput THE URANIUM ISOTOPE PROXY Aanoxic⋅kanoxic⋅Danoxic þ Asuboxic⋅ksuboxic⋅Dsuboxic þ Aoxic⋅koxic⋅Doxic Variations in global ocean d238U may reflect changes
Recommended publications
  • Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
    Journal of Paleontology, page 1 of 30 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • Grand Patrons RICHARD K. BAMBACH ARTHUR J. BOUCOT
    OGic OGic L al L al O S O S T O T O N N C C O O I I E E E E T L T L Y Y A A P P OFFICERS AND EDITORS OF THE PALEONTOLOGICAL SOCIETY Grand Patrons ANDREW H. KNOLL RICHARD K. BAMBACH CHARLES LANE ARTHUR J. BOUCOT ALLAN R. LARSON President PETER J. HARRIES, SIMON SCHNEIDER, Editor, Special Publications RODNEY M. FELDMAN AND CARRIE SCHWEITZER CECILIA LENK AND PAUL K. STROTHER BRUCE MacFADDEN, North Carolina State CASP COLIN SUMRALL, ROBERT AND ELVIRA GASTALDO JERE H. LIPPS Florida Museum of Natural History CRAIG SCOTT, Univ. of Tennessee, Knoxville THE FAMILY OF N. GARY LANE ALAN R. LORD MICHAEL HAUTMANN, bmacfadd@fl mnh.ufl .edu Royal Tyrrell Museum of Paleontology [email protected] A. R. (PETE) PALMER CHRIS MAPLES AND SARA MARCUS Univ. of Zurich J. WILLIAM SCHOPF President-Elect MARY SILCOX, Education/Outreach Coordinator JANET WOOD McGREGOR RAMAN J. SINGH WILLIAM DiMICHELE, MARTIN J. HEAD, Univ. of Toronto Scarborough ROWAN LOCKWOOD, CHERYL L. METZ STEVEN M. STANLEY Smithsonian Institution Brock Univ. College of William & Mary MOLLY F. AND CALVIN MILLER EDUARDO LEORRI SORIANO, [email protected] [email protected] RONALD W. MORIN THOMAS HEGNA, East Carolina Univ., Greenville Patrons OSBORNE B. NYE, JR. Past President Western Illinois Univ. Diversity and Inclusion Coordinator EDWARD J. ANDREW, JR. DAVID VARRICCHIO, TERESA O’NEILL ARNOLD I. MILLER, DENA SMITH, WILLIAM I. AUSICH Montana State Univ. RONALD L. PARSLEY Univ. of Cincinnati SAMANTHA HOPKINS, Univ. of Colorado BRUCE M. BELL MARK E. PATZKOWSKY [email protected] Univ.
    [Show full text]
  • A Stem Group Echinoderm from the Basal Cambrian of China and the Origins of Ambulacraria
    ARTICLE https://doi.org/10.1038/s41467-019-09059-3 OPEN A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria Timothy P. Topper 1,2,3, Junfeng Guo4, Sébastien Clausen 5, Christian B. Skovsted2 & Zhifei Zhang1 Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuter- 1234567890():,; ostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem- echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates. 1 Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 710069 Xi’an, China. 2 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007104 05, Stockholm, Sweden. 3 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK. 4 School of Earth Science and Resources, Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits, MLR, Chang’an University, 710054 Xi’an, China.
    [Show full text]
  • Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, UK
    Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, England By © Kendra Morgan Power, B.Sc. (Hons.) A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Memorial University of Newfoundland May 2020 St. John’s Newfoundland Abstract The pre-trilobitic lower Cambrian of the Withycombe Formation is a 194 m thick siliciclastic succession dominated by interbedded offshore red to purple and green pyritic mudstone with minor sandstone. The mudstone contains a hyolith-dominated small shelly fauna including: orthothecid hyoliths, hyolithid hyoliths, the rostroconch Watsonella crosbyi, early brachiopods, the foraminiferan Platysolenites antiquissimus, the coiled gastropod-like Aldanella attleborensis, halkieriids, gastropods and a low diversity ichnofauna including evidence of predation by a vagile infaunal predator. The assemblage contains a number of important index fossils (Watsonella, Platysolenites, Aldanella and the trace fossil Teichichnus) that enable correlation of strata around the base of Cambrian Stage 2 from Avalonia to Baltica, as well as the assessment of the stratigraphy within the context of the lower Cambrian stratigraphic standards of southeastern Newfoundland. The pyritized nature of the assemblage has enabled the study of some of the biota using micro-CT, augmented with petrographic studies, revealing pyritized microbial filaments of probable giant sulfur bacteria. We aim to produce the first complete description of the core and the abundant small pyritized fossils preserved in it, and develop a taphonomic model for the pyritization of the “small” shelly fossils. i Acknowledgements It is important to acknowledge and thank the many people who supported me and contributed to the successful completion of this thesis.
    [Show full text]
  • Paleobiology of the Early Cambrian Yanjiahe Formation in Hebei Province of South China
    Paleobiology of the Early Cambrian Yanjiahe Formation in Hebei Province of South China Jesse Broce Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Geosciences Shuhai Xiao Benjamin C. Gill James D. Schiffbauer April 30, 2013 Blacksburg, VA Keywords: Acetic, Acid, Annulations, Brachiopod, Calcite, Cambrian, Cycloneuralia, Chancelloria, China, Diagenesis, Ecdysozoan, EDS, Embryo, Fossil, Grooves, Hyolith, Introverta, Limestone, Maceration, Markuelia, Micro-CT, Microfossil, Panarthropoda, Phosphatization, Priapulid, Pseudooides, Pyrite, Scalidophoran, SEM, Sponge, Taphonomy, Worm, Yanjiahe Paleobiology of the Early Cambrian Yanjiahe Formation in Hebei Province of South China Jesse Broce ABSTRACT Fossils recovered from limestones of the lower Cambrian (Stage 2-3) Yanjiahe Formation in Hubei Province, South China, recovered using acetic acid maceration, fracturing, and thin sectioning techniques were examined using a combination of analytical techniques, including energy dispersive spectroscopic (EDS) elemental mapping and micro-focus X-ray computed tomography (micro-CT). One important fossil recovered and analyzed with these techniques is a fossilized embryo. Fossilized animal embryos from lower Cambrian rocks provide a rare opportunity to study the ontogeny and developmental biology of early animals during the Cambrian explosion. The fossil embryos in this study exhibit a phosphatized outer envelope (interpreted as the chorion) that encloses a multicelled blastula-like embryo or a calcitized embryo marked by sets of grooves on its surface. The arrangement of these grooves resembles annulations found on the surface of the Cambrian-Ordovician fossil embryo Markuelia. Previously described late-stage Markuelia embryos exhibit annulations and an introvert ornamented by scalids, suggesting a scalidophoran affinity.
    [Show full text]
  • Cambrian Transition
    Sedimentology (2016) 63, 378–410 doi: 10.1111/sed.12220 Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran–Cambrian transition LAWRENCE M. OCH*, LORENZO CREMONESE*, GRAHAM A. SHIELDS-ZHOU*†, SIMON W. POULTON‡, ULRICH STRUCK§, HONGFEI LING¶,DALI¶,XICHEN¶, CHRISTINA MANNING**, MATTHEW THIRLWALL**, HARALD STRAUSS†† and MAOYAN ZHU† *Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK (E-mail: [email protected]) †State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 21008, China ‡School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK §Leibniz-Institut fur€ Evolutions- und Biodiversitatsforschung,€ Museum fur€ Naturkunde, 10115 Berlin, Germany ¶State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China **Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK ††Institute for Geology and Paleontology, Westfalische€ Wilhelms-Universitat€ Munster,€ 48149 Munster,€ Germany Associate Editor – Ian Fairchild ABSTRACT The Ediacaran–Cambrian interval was an eventful transitional period, when dynamic interactions between the biosphere and its physical environment allowed the Earth System to cross into a new state, characterized by the presence of metazoans, more equable climates and more expansive oxygena- tion of the oceans. Due to the retreat of widespread sulphidic conditions, redox-sensitive trace-metals could accumulate to a greater extent in ‘black shales’ deposited in localized anoxic/euxinic environments, such as highly productive ocean margins. This study investigates the concentrations of the redox-sensitive trace-metals molybdenum and vanadium in organic-rich sed- imentary rocks from seven sections of the Yangtze Platform, slope and basin.
    [Show full text]
  • Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
    Journal of Paleontology, 95(3), 2021, p. 497–526 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen.
    [Show full text]
  • Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China: the Earliest Biomineralizing Sponge Record
    PALAEO-07880; No of Pages 9 Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2016) xxx–xxx Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Sponge spicules from the lower Cambrian in the Yanjiahe Formation, South China: The earliest biomineralizing sponge record Shan Chang a,b,QinglaiFenga,b,⁎, Sébastien Clausen c, Lei Zhang b a State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China b School of Earth Science, China University of Geoscience, Wuhan 430074, China c Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France article info abstract Article history: Sponges are the earliest metazoans, and according to molecular-clocks, have a deep history back into the Received 17 February 2016 Cryogenian. However, the record of their biomineralized elements below the Ediacaran-Cambrian Boundary Received in revised form 10 June 2016 has been controversial. Here we present the first and earliest indisputable record of hexactinellid spicules in Accepted 21 June 2016 the lowest Cambrian, Terreneuvian, below the small shelly fossil Anabarites trisulcatus–Protohertzina anabarica Available online xxxx assemblage zone (Zone I). Spicules recovered from cherts of the lowest Yanjiahe Formation in the Yichang, Hubei province, South China, include monaxons, diaxons, triaxons, and that are all siliceous in composition. Keywords: fi Terreneuvian This earliest record of silica biomineralization by lter feeding metazoan suggests sponges have contributed to Hexactinellid spicules the cycling of silica in the oceanic system as early as the beginning of the Phanerozoic. These results, along Diversification with a review of previously reported sponge occurrences, suggest a two-step evolution on sponges of the early Biomineralization Cambrian.
    [Show full text]
  • Early Cambrian (Stage 4) Brachiopods from the Shipai Formation in the Three Gorges Area of South China
    Journal of Paleontology, 95(3), 2021, p. 497–526 Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.117 Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China Xiaolin Duan,1 Marissa J. Betts,1,2 Lars E. Holmer,1,3 Yanlong Chen,1 Fan Liu,1 Yue Liang,1 and Zhifei Zhang1* 1State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an, 710069, China <[email protected]>, <[email protected]> 2Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia <[email protected]> 3Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden <[email protected]> Abstract.—Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen.
    [Show full text]
  • Chen Et Al, 2018 Late Ediacaran Trackways Produced by Bilaterian An
    SCIENCE ADVANCES | RESEARCH ARTICLE PALEONTOLOGY Copyright © 2018 The Authors, some Late Ediacaran trackways produced by bilaterian rights reserved; exclusive licensee animals with paired appendages American Association for the Advancement 1,2 1,3 2,4 1,2,3 5 of Science. No claim to Zhe Chen *, Xiang Chen , Chuanming Zhou , Xunlai Yuan , Shuhai Xiao * original U.S. Government Works. Distributed Ediacaran trace fossils provide key paleontological evidence for the evolution of early animals and their behaviors. under a Creative Thus far, however, this fossil record has been limited to simple surface trails and relatively shallow burrows. We Commons Attribution report possible trackways, preserved in association with burrows, from the terminal Ediacaran Shibantan Member NonCommercial (ca. 551 to ca. 541 million years ago) in the Yangtze Gorges area of South China. These trace fossils represent the License 4.0 (CC BY-NC). earliest known trackways. They consist of two rows of imprints arranged in poorly organized series or repeated groups. These trackways may have been produced by bilaterian animals with paired appendages, although the phylum-level phylogenetic affinity of the trace makers remains unknown. It is possible that the trackways and associated burrows were produced by the same trace maker, indicating a complex behavior involving both walking and burrowing. Together, these trackways and burrows mark the arrival of a new era characterized by an increasing geobiological footprint of bilaterian animals. Downloaded from INTRODUCTION panarthropods) and represent an important category of ichnological Molecular clocks indicate that the kingdom Metazoa diverged in the architecture, are hitherto unknown in the Ediacaran Period [(9), Tonian Period [~1000 to 720 million years (Ma) ago], major superphyla but see Chen et al.(13)].
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Earth and Planetary Science Letters 317-318 (2012) 96–110 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform Ganqing Jiang a,⁎, Xinqiang Wang b, Xiaoying Shi b, Shuhai Xiao c, Shihong Zhang b, Jin Dong d a Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010, USA b State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China c Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA d Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China article info abstract Article history: The early Cambrian (ca. 542–520 Ma) strata in South China record two prominent negative carbonate carbon iso- Received 14 April 2011 13 tope (δ Ccarb)excursionsofearlyNemakit–Daldynian (N–D) and early Tommotian ages.
    [Show full text]