Air Quality Observation Systems in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Air Quality Observation Systems in the United States Air Quality Observation Systems in the United States NOVEMBER 2013 PRODUCT OF THE Committee on Environment, Natural Resources, and Sustainability OF THE NATIONAL SCIENCE AND TECHNOLOGY COUNCIL 2 THIS DOCUMENT IS A PRODUCT OF THE NATIONAL SCIENCE & TECHNOLOGY COUNCIL’S COMMITTEE ON ENVIRONMENT, NATURAL RESOURCES, AND SUSTAINABILITY About the National Science and Technology Council The National Science and Technology Council (NSTC) is the principal means by which the Executive Branch coordinates science and technology policy across the diverse entities that make up the Federal research and development enterprise. A primary objective of the NSTC is establishing clear national goals for Federal science and technology investments. The NSTC prepares research and development strategies that are coordinated across Federal departments and agencies to form investment packages aimed at accomplishing multiple national goals. The work of the NSTC is organized under five committees: Environment, Natural Resources and Sustainability; Homeland and National Security; Science, Technology, Engineering, and Math (STEM) Education; Science; and Technology. Each of these committees oversees subcommittees and working groups focused on different aspects of science and technology. More information is available at http://www.whitehouse.gov/ostp/nstc. About the Office of Science and Technology Policy The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology Policy, Organization, and Priorities Act of 1976. OSTP’s responsibilities include advising the President in policy formulation and budget development on questions in which science and technology are important elements; articulating the President’s science and technology policy and programs; and fostering strong partnerships among Federal, state, and local governments, and the scientific communities in industry and academia. The Director of OSTP also serves as Assistant to the President for Science and Technology and manages the NSTC. More information is available at http://www.whitehouse.gov/ostp. About Subcommittee on Air Quality Research (AQRS) The Subcommittee on Air Quality Research (AQRS) is chartered to advise and assist in the coordination and enhancement of the effectiveness of U.S. air quality research. Its scope includes the observation, understanding, prediction, and assessment of the causes and consequences, both physical and biological, of degraded air quality, and the development of effective preservation and remediation strategies. In reporting to the CENRS, AQRS functions to: identify research information required to inform policy decisions; develop Federal interagency research strategies and priorities; serve as a forum to facilitate research planning; coordinate with other NSTC, Federal interagency, and private sector groups (as permitted by law); and periodically assess the effectiveness of Federal air quality research programs. Federal Copyright Information This document is a work of the United States Government and is in the public domain (see 17 U.S.C. §105). Subject to the stipulations below, it may be distributed and copied with acknowledgment to OSTP. Copyrights to graphics included in this document are reserved by the original copyright holders or their assignees and are used here under the government’s license and by permission. Requests to use any images must be made to the provider identified in the image credits or to OSTP if no provider is identified. 3 National Science and Technology Council Chair Staff John P. Holdren Pedro I. Espina (through May 31, 2013) Assistant to the President for Science and Executive Director Technology and Director, Jayne B. Morrow (beginning June 1, 2013) Office of Science and Technology Policy Executive Director Committee on Environment, Natural Resources, and Sustainability Chairs Tamara Dickinson Kathryn Sullivan Principal Assistant Director for Environment and Acting Undersecretary for Oceans and Atmosphere Energy; Assistant Director for Disaster Resilience Administrator of the National Oceanic and and Space Science Atmospheric Administration Office of Science and Technology Policy Department of Commerce Glenn Paulson Staff Science Advisor Lisa Matthews Environmental Protection Agency Executive Secretary Environmental Protection Agency Subcommittee on Air Quality Research Chair Staff Dan Costa Jeanne Waters Environmental Protection Agency Executive Secretary National Oceanic and Atmospheric Administration Akkihebbal Ravishankara National Oceanic and Atmospheric Administration Acknowledgments This report was prepared by the Air Quality Research Subcommittee (AQRS) of the National Science and Technology Council’s Committee on Environment, Natural Resources, and Sustainability. It updates an earlier AQRS report on the Nation’s air quality networks and explores the broader integration of observational-based resources across several Federal agencies. The principal authors of this report are Richard Scheffe and Joseph Tikvart, based in the Office of Air Quality Planning and Standards of the U.S. Environment Protection Agency (EPA). Substantial assistance was provided by David McCabe of EPA’s Clean Air Task Force during his tenure as an American Association for the Advancement of Science Fellow. Significant review and advice was provided by the following: John Dawson, Terry Keating, Jim Szykman, and Richard Haeuber (EPA); Marc Pitchford, Richard Artz, David Parrish, John McNulty, Shobha Kondragunta, Steve Fine, and Jim Meagher (National Oceanic and Atmospheric Administration); John Ray, Julie Thomas, and Bill Malm (National Park Service); Jay Al-Saadi, Bruce Doddridge, and Doreen Neil (National Aeronautics and Space Administration); and Ray Knighton and Rich Pouyat (U.S. Department of Agriculture). 4 Air Quality Observation Systems in the United States 5 Table of Contents Executive Summary ..................................................................................................................................... 7 Introduction ................................................................................................................................................ 10 Overview of Observation Programs .......................................................................................................... 15 Maintaining and Advancing Observation Programs ................................................................................. 42 Conclusions ................................................................................................................................................. 54 References .................................................................................................................................................. 56 Appendices .................................................................................................................................................... i 6 Executive Summary – Air Quality Observation Systems in the United States In June 2013, President Obama released his Climate Action Plan. The Plan calls for a range of activities to help mitigate the impacts of carbon pollution, prepare for and adapt to those impacts that cannot be avoided, and enhance international efforts to reduce the harmful global effects of climate change. Success in each of the Plan’s three components will require access to and application of the highest quality atmospheric science. Fortunately, as a result of decades of attention to the issue of air quality generally – from ozone and carbon dioxide to soot and other particulates – the United States is in good position to address the added observational and modeling challenges posed by climate change. Federal agencies and state and local partners invest hundreds of millions of dollars annually to maintain and operate the Nation’s ground- and space-based air quality observation networks, and to conduct short-term field studies relating to air quality. The data collected by these activities have been indispensable to the effective development and implementation of policies to protect public health and the environment, and will be even more so as the Nation addresses the emerging impacts of climate change. This report catalogs the wide range of U.S. air quality measurement modalities and programs, including routine regulatory and deposition networks, intensive field studies, satellites, and fixed-site special-purpose networks operated or overseen by Federal departments and agencies – including the Environmental Protection Agency (EPA), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), U.S. Department of Agriculture (USDA), Department of Energy (DOE), Department of Health and Human Services (DHHS), Department of Homeland Security (DHS), and Department of the Interior (DOI) – and by various state, local and tribal partners. It also highlights some leading observational needs and opportunities, and identifies some of the barriers to fulfilling those needs and leveraging those opportunities. Specific programs and the pollutants they measure are documented in detail in the appendices. Among this report’s findings (not ranked in priority order) are: Observational Needs 1. Although local and regional observation and emissions reduction efforts are generally well advanced in the United States, there is a need to improve characterization of pollutants from distant/international sources to better evaluate their contribution to domestic air quality.
Recommended publications
  • Aethalometer Is Located, Data from the Aethalometer Will Also Be Compared to the Sunset Semi-Continuous Analyzer
    Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 Sunset Carbon Evaluation Project Quality Assurance Project Plan (QAPP) QA Level IV U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Ambient Air Monitoring Group September 27, 2011 Page 1 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 Page 2 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 DISTRIBUTION LIST The following individuals have been provided with copies of this QAPP. Lewis Weinstock EPA Group Lead U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Elizabeth Landis EPA Project Lead U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Mike Papp QA EPA QA Officer U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Joann Rice EPA Technical Advisor U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Page 4 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 1.0 Introduction This is a level IV Quality Assurance Project Plan (QAPP) that covers an Environmental Data Operation (EDO) conducted by the EPA’s Office of Air Quality Planning and Standards (OAQPS) Ambient Air Monitoring Group (AAMG) and State and local monitoring agencies to collect field data at seven (7) sites across the United States. The selection of participating sites is in progress, and to date, monitoring agencies at 3 sites have agreed to participate.
    [Show full text]
  • Performance Evaluation of Misting Fans in Hot and Humid Climate
    Building and Environment 45 (2010) 2666e2678 Contents lists available at ScienceDirect Building and Environment journal homepage: www.elsevier.com/locate/buildenv Performance evaluation of misting fans in hot and humid climate N.H. Wong*, Adrian Z.M. Chong Department of Building, School of Design and Environment, National University of Singapore, 117566 Republic of Singapore article info abstract Article history: Singapore experiences a hot and humid climate throughout the year. This in turn results in heavy reli- Received 3 March 2010 ance on mechanical systems especially air-conditioning to achieve thermal comfort. An alternative would Received in revised form be the use of evaporative cooling which is less energy intensive. Objective and subjective measurements 14 May 2010 were conducted at an experimental setup at the National University of Singapore (NUS) to evaluate the Accepted 27 May 2010 thermal conditions and thermal sensations brought about by misting fans. Field measurements were also conducted at food centres in Singapore to determine if they are coherent with the objective and Keywords: subjective measurements conducted. Analysis of objective and subjective data showed that the misting Misting fan fi Evaporative cooling fan was able to signi cantly reduce the dry-bulb temperature and thermal sensation votes. This is fi Singapore consistent with eld measurements taken, where regression analysis showed that with the misting fan, Hot thermal neutrality can be obtained at a higher outdoor effective temperature (ET*). However, the Humid reduction in temperature comes at the expense of higher relative humidity which results in consistently greater biological (bacterial and fungal) pollutants being enumerated from samples collected under the misting fan system.
    [Show full text]
  • Are Black Carbon and Soot the Same? Title Page
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 24821–24846, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/24821/2012/ Chemistry ACPD doi:10.5194/acpd-12-24821-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions 12, 24821–24846, 2012 This discussion paper is/has been under review for the journal Atmospheric Chemistry Are black carbon and Physics (ACP). Please refer to the corresponding final paper in ACP if available. and soot the same? P. R. Buseck et al. Are black carbon and soot the same? Title Page P. R. Buseck1,2, K. Adachi1,2,3, A. Gelencser´ 4, E.´ Tompa4, and M. Posfai´ 4 Abstract Introduction 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, USA Conclusions References 2 Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85282, USA Tables Figures 3Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan 4Department of Earth and Environmental Sciences, University of Pannonia, Veszprem,´ J I Hungary J I Received: 1 September 2012 – Accepted: 3 September 2012 – Published: 21 September 2012 Back Close Correspondence to: P. R. Buseck ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 24821 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. 12, 24821–24846, 2012 Thus, there is uncertainty about its exact nature.
    [Show full text]
  • Quality Assurance Project Plan (Qapp)
    FCEAP Criteria Air Pollutants QAPP September 2017 Page 1 of 109 Revision 0 QUALITY ASSURANCE PROJECT PLAN (QAPP) FOR AMBIENT AIR QUALITY MONITORING OF CRITERIA AIR POLLUTANTS 9/5/17 SUBMITTED BY THE FORSYTH COUNTY OFFICE OF ENVIRONMENTAL ASSISTANCE AND PROTECTION (FCEAP) FCEAP Criteria Air Pollutants QAPP September 2017 Page 2 of 109 Revision 0 Quality Assurance Project Plan Acronym Glossary A&MD- Analysis and Monitoring Division A&MPM- Analysis and Monitoring Program Manager AQI – Air Quality Index AQS - Air Quality System (EPA's Air database) CFR – Code of Federal Regulations DAS - Data Acquisition System DQA - Data Quality Assessment DQI - Data Quality Indicator DQO - Data Quality Objective EPA - Environmental Protection Agency FCEAP-Forsyth County Office of Environmental Assistance and Protection FTS - Flow Transfer Standard FEM – Federal Equivalent Method FRM – Federal Reference Method LAN – Local Area Network MQO – Measurement Quality Objective NAAQS - National Ambient Air Quality Standards NCDAQ - North Carolina Division of Air Quality NIST - National Institute of Science and Technology NPAP - National Performance Audit Program PEP – Performance Evaluation Program PQAO – Primary Quality Assurance Organization QA – Quality Assurance QA/QC - Quality Assurance/Quality Control QAPP - Quality Assurance Project Plan QC – Quality Control SD – Standard Deviation SLAMS - State and Local Air Monitoring Station SOP - Standard Operating Procedure SPM - Special Purpose Monitor TEOM - Tapered Elemental Oscillating Microbalance TSA - Technical
    [Show full text]
  • UMAP Lidars (UMBC Measurements of Atmospheric Pollution)
    UMAP Lidars (UMBC Measurements of Atmospheric Pollution) Raymond Hoff Ruben Delgado, Tim Berkoff, Jamie Compton, Kevin McCann, Patricia Sawamura, Daniel Orozco, UMBC October 5 , 2010 DISCOVR-AQ Engel-Cox, J. et.al. 2004. Atmospheric Environment. Baltimore, MD Summer 2004 100 1.6 90 Old Town TEOMPM2.5 MODIS 1.4 80 MODIS AOD July 21 ) 1.2 3 70 Mixed down July 9 smoke 1 g/m 60 High altitude µ ( smoke 50 0.8 (g ) AOD 2.5 40 0.6 PM 30 0.4 20 0.2 MODISAerosol Optical Depth 10 0 0 07/01/04 07/08/04 07/15/04 07/22/04 07/29/04 08/05/04 08/12/04 08/19/04 08/26/04 Courtesy EPA/UWisconsin Conceptually simple idea Η α Extinction Profile and PBL H 100 1.6 Smoke mixing in Hourly PM2.5 90 Daily Average PM2.5 1.4 Maryland 80 MODIS AOD Lidar OD Total Column 20-22 July 2004 Lidar OD Below Boundary Layer 1.2 ) 70 3 60 1 (ug/m 50 0.8 2.5 40 0.6 PM 30 Depth Optical 0.4 20 10 0.2 0 0 07/19/04 07/20/04 07/21/04 07/22/04 07/23/04 Before upgrading: 2008 Existing ALEX - UV N2, H2O Raman lidar - 355, 389, 407 nm ELF - 532(⊥,), 1064 elastic lidar GALION needs QA/QC site for lidars in US Have all the wavelengths that people might use routinely Ability to cross-calibrate instruments Need to add MPL and LEOSPHERE Micropulse Lidar Leosphere UMBC Monitoring of Atmospheric Pollution (UMAP) (NASA Radiation Sciences Supported Project) Weblinks to instruments http://alg.umbc.edu/UMAP Data available 355 nm Leosphere retrieval (new) New instruments BAM and TEOM (PM2.5 continuously) TSI 3683 (3λ nephelometer) CIMEL (8λ AOD, size distribution) LICEL (new detector package for ALEX) MPL Shareware Concept Lidar and radiosonde measurements were also used to evaluate nearby ACARS PBLH estimates at RFK and BWI airports.
    [Show full text]
  • Aerodrome Actual Weather – METAR Decode
    Aerodrome Actual Weather – METAR decode Code element Example Decode Notes 1 Identification METAR — Meteorological Airfield Report, SPECI — selected special (not from UK civil METAR or SPECI METAR METAR aerodromes) Location indicator EGLL London Heathrow Station four-letter indicator 'ten twenty Zulu on the Date/Time 291020Z 29th' AUTO Metars will only be disseminated when an aerodrome is closed or at H24 aerodromes, A fully automated where the accredited met. observer is on duty break overnight. Users are reminded that reports AUTO report with no human of visibility, present weather and cloud from automated systems should be treated with caution intervention due to the limitations of the sensors themselves and the spatial area sampled by the sensors. 2 Wind 'three one zero Wind degrees, fifteen knots, Max only given if >= 10KT greater than the mean. VRB = variable. 00000KT = calm. 31015G27KT direction/speed max twenty seven Wind direction is given in degrees true. knots' 'varying between two Extreme direction 280V350 eight zero and three Variation given in clockwise direction, but only when mean speed is greater than 3 KT. variance five zero degrees' 3 Visibility 'three thousand two Prevailing visibility 3200 0000 = 'less than 50 metres' 9999 = 'ten kilometres or more'. No direction is required. hundred metres' Minimum visibility 'Twelve hundred The minimum visibility is also included alongside the prevailing visibility when the visibility in one (in addition to the 1200SW metres to the south- direction, which is not the prevailing visibility, is less than 1500 metres or less than 50% of the prevailing visibility west' prevailing visibility. A direction is also added as one of the eight points of the compass.
    [Show full text]
  • Guidance for Using Continuous Monitors in Pm Monitoring
    United States Office of Air Quality EPA-454/R-98-012 Environmental Protection Planning and Standards May 1998 Agency Research Triangle Park, NC 27711 Air GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS May 29, 1998 PREPARED BY John G. Watson1 Judith C. Chow1 Hans Moosmüller1 Mark Green1 Neil Frank2 Marc Pitchford3 PREPARED FOR Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711 1Desert Research Institute, University and Community College System of Nevada, PO Box 60220, Reno, NV 89506 2U.S. EPA/OAQPS, Research Triangle Park, NC, 27711 3National Oceanic and Atmospheric Administration, 755 E. Flamingo, Las Vegas, NV 89119 DISCLAIMER The development of this document has been funded by the U.S. Environmental Protection Agency, under cooperative agreement CX824291-01-1, and by the Desert Research Institute of the University and Community College System of Nevada. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This draft has not been subject to the Agency’s peer and administrative review, and does not necessarily represent Agency policy or guidance. ii ABSTRACT This guidance provides a survey of alternatives for continuous in-situ measurements of suspended particles, their chemical components, and their gaseous precursors. Recent and anticipated advances in measurement technology provide reliable and practical instruments for particle quantification over averaging times ranging from minutes to hours. These devices provide instantaneous, telemetered results and can use limited manpower more efficiently than manual, filter-based methods.
    [Show full text]
  • Monitoring for Fine Particulate Matter
    Monitoring for Fine Particulate Matter Elisa Eiseman Critical Technologies Institute R The research described in this report was conducted by RAND’s Critical Technologies Institute. ISBN: 0-8330-2618-6 RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. © Copyright 1998 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. Cover design: Elisa Eiseman Published 1998 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1333 H St., N.W., Washington, D.C. 20005-4707 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] This document is available on the World Wide Web at http://www.rand.org/publications/MR/MR974 PREFACE In accordance with the Clean Air Act, the United States Environmen- tal Protection Agency (EPA) has reviewed the National Ambient Air Quality Standards (NAAQS) for particulate matter (PM) and set new standards for fine particulate matter with a diameter less than or μ equal to 2.5 m (PM2.5). This document reviews the new Federal Ref- erence Method (FRM) developed by the EPA for monitoring PM2.5, which is a manual method that will be used to ensure national con- sistency in PM2.5 monitoring and compliance with the EPA’s new standards for PM.
    [Show full text]
  • Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/ 289
    National Park Service U.S. Department of the Interior Natural Resource Program Center Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/ 289 ON THE COVER Hiker photographing distant vistas in the Needles District at Canyonlands National Park, Utah. Credit: National Park Service. ON THIS PAGE Good (top) and poor (bottom) visibility at Yosemite National Park, California. Credit: National Park Service. Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/289 Natural Resource Program Center Air Resources Division PO Box 25287 Denver, Colorado 80225 January 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service (NPS), Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the NPS and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This technical guidance has undergone review by the NPS Air Resources Division, the Environmental Quality Division, and the Natural Resource Program Center’s Planning Technical Advisory Group, along with the Department of the Interior Solicitor’s Office.
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]
  • Protecting Against Vapor Explosions with Water Mist
    PROTECTING AGAINST VAPOR EXPLOSIONS WITH WATER MIST J. R. Mawhinney and R. Darwin Hughes Associates, Inc. INTRODUCTION This paper examines a number of practical questions about the possibility of using water mist to mitigate explosion hazards in some industrial applications. Water mist systems have been installed to replace Halon 1301 in gas compressor modules on Alaska’s North Slope oil fields. The hazard in the compressor modules includes fire in lubrication oil lines for the gas turbines that drive the compressors. The hazard also involves the potential for a methane gas leak, ignition, and explosion, although the probabilities of occurrence for the explosion hazard are not the same as the lube oil fire. The performance objective for the original halon systems was to inert the compartment, thus addressing both fire and explosion concerns. The design concentra- tions for the compressor modules were closer to 1.5% than to S%, indicating they were intended to provide an inerting effect. As part of the global move to eliminate ozone-depleting fire sup- pression agents, companies are replacing Halon 1301 systems with water mist systems. The water mist systems were developed and tested for control of liquid fuel or lubricating oil spray or pool fires associated with the turbines that drive the gas compressors. The water mist systems address the most likely hazard, the lube oil fire, hut the inerting benefit provided by Halon I301 has been lost. This has left the question of what to do if there is a methane gas leak unanswered. The question has been asked by the operators of these modules as to whether water mist can provide any benefit for mitigating the gas-air explosion hazard.
    [Show full text]
  • Standard Methods for the Examination of Water and Wastewater
    Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body.
    [Show full text]